隐马尔可夫模型(四)——隐马尔可夫模型的评估问题(后向算法)

简介:

对于HMM的评估问题,利用动态规划可以用前向算法,从前到后算出前向变量;也可以采用后向算法,从后到前算出后向变量。

先介绍后向变量βt(i):给定模型μ=(A,B,π),并且在时间 时刻t 状态为si 的前提下,输出序列为Ot+1Ot+2...OT的概率,即

                                    βt(i)=P(Ot+1Ot+2...OT|qt=si,μ)

归纳过程

    假设仍然有3个状态

                  

    当t=T时,按照定义:时间t  状态q输出为OT+1......的概率,从T+1开始的输出是不存在的(因为T时刻是终止终止状态),即T之后是空,是个必然事件,因此βt(i)=1,1≤1≤N

    当t=T-1时,

                          

                 βT-1(i)=P(OT|qT-1=si,μ) = ai1*b1(OT)*βT(1)  +  ai2*b2(OT)*βT(2)  +  ai3*b3(OT)*βT(3)

      ......

    当t=1时,

       β1(1)=P(O2O3...OT|q2=s1,μ) = a11*b1(O2)*β2(1) + a12*b2(O2)*β2(2) + a13*b3(O2)*β2(3)

       β1(2)=P(O2O3...OT|q2=s1,μ) = a21*b1(O2)*β2(1) + a22*b2(O2)*β2(2) + a23*b3(O2)*β2(3)

       β1(3)=P(O2O3...OT|q2=s1,μ) = a31*b1(O2)*β2(1) + a32*b2(O2)*β2(2) + a33*b3(O2)*β2(3)

       P(O1O2...OT|μ) =    

                             =   

                             =  

后向算法

    step1 初始化:βT(i)=1, 1≤1≤N

    step2 归纳计算:

                       1≤t≤T-1, 1≤i≤N

    step3 求终结和:

                   P(O|μ)=  

时间复杂度

    计算某时刻在某个状态下的后向变量需要看后一时刻的N个状态,此时时间复杂度为O(N),每个时刻有N个状态,此时时间复杂度为N*O(N)=O(N2),又有T个时刻,所以时间复杂度为T*O(N2)=O(N2T)。

程序例证

              

后向算法

    计算P(O|M):

    step1:β4(1) = 1          β4(2) = 1          β4(3) = 1

    step2:β3(1) = β4(1)*a11*b1(white) + β4(2)*a12*b2(white) + β4(3)*a13*b3(white)

                     ...

    step3:P(O|M) = π11(1)*b1(O1) + π21(2)*b2(O1) + π31(3)*b3(O1)

程序代码

复制代码
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{
        float a[3][3] = {{0.5,0.2,0.3},{0.3,0.5,0.2},{0.2,0.3,0.5}};
        float b[3][2] = {{0.5,0.5},{0.4,0.6},{0.7,0.3}};
        float result[4][3];
        int list[4] = {0,1,0,1};
        result[3][0] = 1;
        result[3][1] = 1;
        result[3][2] = 1;
        int i,j,k, count = 3;
        for (i=2; i>=0; i--)
        {
            for(j=0; j<=2; j++)
            {
                result[i][j] = 0;
                for(k=0; k<=2; k++)
                {
                   result[i][j] += result[i+1][k] * a[j][k] * b[k][list[count]];
                }
            }
            count -= 1;
        }
       for (i=0; i<=3; i++)
        {
            for(j=0; j<=2; j++)
            {
                printf("b[%d][%d] = %f\n",i+1,j+1,result[i][j]);

            }
        }
        printf("backward:%f\n", result[0][0]*0.2*0.5+result[0][1]*0.4*0.4+result[0][2]*0.4*0.7);
        return 0;
}
复制代码

运行结果

             





本文转自jihite博客园博客,原文链接:http://www.cnblogs.com/kaituorensheng/archive/2012/12/03/2800489.html,如需转载请自行联系原作者


相关文章
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
21 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
4天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
25 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
16天前
|
机器学习/深度学习 人工智能 算法
青否数字人声音克隆算法升级,16个超真实直播声音模型免费送!
青否数字人的声音克隆算法全面升级,能够完美克隆真人的音调、语速、情感和呼吸。提供16种超真实的直播声音模型,支持3大AI直播类型和6大核心AIGC技术,60秒快速开播,助力商家轻松赚钱。AI讲品、互动和售卖功能强大,支持多平台直播,确保每场直播话术不重复,智能互动和真实感十足。新手小白也能轻松上手,有效规避违规风险。
|
17天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
21天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
65 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
108 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
1月前
|
机器学习/深度学习 数据采集 算法
如何在一夜之间成为模型微调大师?——从零开始的深度学习修炼之旅,让你的算法功力飙升!
【10月更文挑战第5天】在机器学习领域,预训练模型具有强大的泛化能力,但直接使用可能效果不佳,尤其在特定任务上。此时,模型微调显得尤为重要。本文通过图像分类任务,详细介绍如何利用PyTorch对ResNet-50模型进行微调,包括环境搭建、数据预处理、模型加载与训练等步骤,并提供完整Python代码。通过调整超参数和采用早停策略等技巧,可进一步优化模型性能。适合初学者快速上手模型微调。
91 8
|
1月前
|
机器学习/深度学习 算法 搜索推荐
django调用矩阵分解推荐算法模型做推荐系统
django调用矩阵分解推荐算法模型做推荐系统
26 4
|
2月前
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
54 4
|
2月前
|
算法
基于SIR模型的疫情发展趋势预测算法matlab仿真
该程序基于SIR模型预测疫情发展趋势,通过MATLAB 2022a版实现病例增长拟合分析,比较疫情防控力度。使用SIR微分方程模型拟合疫情发展过程,优化参数并求解微分方程组以预测易感者(S)、感染者(I)和移除者(R)的数量变化。![]该模型将总人群分为S、I、R三部分,通过解析或数值求解微分方程组预测疫情趋势。