.NET平台开源项目速览(13)机器学习组件Accord.NET框架功能介绍

简介:

.NET平台开源项目速览(13)机器学习组件Accord.NET框架功能介绍

    Accord.NET Framework是在AForge.NET项目的基础上封装和进一步开发而来。因为AForge.NET更注重与一些底层和广度,而Accord.NET Framework更注重与机器学习算法以及提供计算机视频、音频、信号处理以及统计应用相关的解决方案。该项目使用C#语言编写,项目主页:http://accord-framework.net/

    说明:该文章只是一个基本介绍,主要内容是翻译的官方文档和介绍,部分英文表述个人能力有限,不太熟悉,所以直接照搬原文,有比较确切的知道中文名称的可以提醒一些我,非常感。本人将使用该组件进行一些简单的数据挖掘和机器学习任务,过程和代码都将发表在本博客,有兴趣的可以关注。

NET开源目录:【目录】本博客其他.NET开源项目文章目录

本文原文地址:.NET平台开源项目速览(13)机器学习组件Accord.NET框架功能介绍

1.基本功能与介绍

    Accord.NET为.NET应用程序提供了统计分析、机器学习、图像处理、计算机视觉相关的算法。Accord.NET框架扩展了AForge.NET框架,提供了一些新功能。同时为.NET环境下的科学计算提供了一个完整的开发环境。该框架被分成了多个程序集,可以直接从官网下载安装文件或者使用NuGet得到。可以参考以下链接:https://github.com/accord-net/framework/wiki

1.1 框架的三大功能模块

Accord.NET框架主要有三个大的功能性模块。分别为科学技术,信号与图像处理,支持组件。下面将对3个模型的命名空间和功能进行简单介绍。可以让大家更快的接触和了解其功能是否是自己想要的,下面是主要的命名空间介绍。

1.1.1 科学计算

Accord.Math:包括矩阵扩展程序,以及一组矩阵数值计算和分解的方法,也包括一些约束和非约束问题的数值优化算法,还有一些特殊函数以及其他一些辅助工具。

Accord.Statistics:包含概率分布、假设检验、线性和逻辑回归等统计模型和方法,隐马尔科夫模型,(隐藏)条件随机域、主成分分析、偏最小二乘判别分析、内核方法和许多其他相关的技术。

Accord.MachineLearning: 为机器学习应用程序提供包括支持向量机,决策树,朴素贝叶斯模型,k-means聚类算法,高斯混合模型和通用算法如Ransac,交叉验证和网格搜索等算法。

Accord.Neuro:包括大量的神经网络学习算法,如Levenberg-Marquardt,Parallel Resilient Backpropagation,Nguyen-Widrow初始化算法,深层的信念网络和许多其他神经网络相关的算法。具体看参考帮助文档。

1.1.2 信号与图像处理

Accord.Imaging:包含特征点探测器(如Harris, SURF, FAST and  FREAK),图像过滤器、图像匹配和图像拼接方法,还有一些特征提取器。

Accord.Audio:包含一些机器学习和统计应用程序说需要的处理、转换过滤器以及处理音频信号的方法。

Accord.Vision:实时人脸检测和跟踪,以及对人流图像中的一般的检测、跟踪和转换方法,还有动态模板匹配追踪器。

1.1.3 支持组件

主要是为上述一些组件提供数据显示,绘图的控件,分为以下几个命名空间:

Accord.Controls:包括科学计算应用程序常见的柱状图、散点图和表格数据浏览。

Accord.Controls.Imaging:包括用来显示和处理的图像的WinForm控件,包含一个方便快速显示图像的对话框。 

Accord.Controls.Audio:显示波形和音频相关性信息的WinForm控件。

Accord.Controls.Vision:包括跟踪头部,脸部和手部运动以及其他计算机视觉相关的任务WinForm控件。

1.2 支持的算法介绍

下面将Accord.NET框架包括的主要功能算法按照类别进行介绍。来源主要是官网介绍,进行了简单的翻译和整理。

1.2.1 分类(Classification)

SVM(支持向量机)、Logistic Regression(逻辑回归)、Decision Trees(决策树)、 Neural Networks(神经网络)、Deep Learning(深度学习)(Deep Neural Networks深层神经网络)、Levenberg-Marquardt with Bayesian Regularization、Restricted Boltzmann Machines(限制玻耳兹曼机)、Sequence classification (序列分类),Hidden Markov Classifiers and Hidden Conditional Random Fields(隐马尔科夫分类器和隐藏条件随机域)。

1.2.2 回归(Regression)

Multiple linear regression(多元线性回归-单因变量多自变量)、Multivariate linear regression(多元线性回归-多因变量多自变量)、polynomial regression (多项式回归)、logarithmic regression(对数回归)、Logistic regression(逻辑回归)、multinomial logistic regression(多项式逻辑回归)(softmax) and generalized linear models(广义线性模型)、L2-regularized L2-loss logistic regression , L2-regularized logistic regression , L1-regularized logistic regression , L2-regularized logistic regression in the dual form and regression support vector machines。

1.2.3 聚类(Clustering)

K-Means、K-Modes、Mean-Shift(均值漂移)、Gaussian Mixture Models(高斯混合模型)、Binary Split(二元分裂)、Deep Belief Networks(深层的信念网络)、 Restricted Boltzmann Machines(限制玻耳兹曼机)。聚类算法可以应用于任意数据,包括图像、数据表、视频和音频。

1.2.4 概率分布(Distributions)

包括40多个分布的参数和非参数估计。包括一些常见的分布如正态分布、柯西分布、超几何分布、泊松分布、伯努利;也包括一些特殊的分布如Kolmogorov-Smirnov , Nakagami、Weibull、and Von-Mises distributions。也包括多元分布如多元正态分布、Multinomial 、Independent 、Joint and Mixture distributions。

1.2.5 假设检验(Hypothesis Tests)

超过35统计假设测试,包括单向和双向方差分析测试、非参数测试如Kolmogorov-Smirnov测试和媒体中的信号测试。contingency table tests such as the Kappa test,with variations for multiple tables , as well as the Bhapkar and Bowker tests; and the more traditional Chi-Square , Z , F , T and Wald tests .

1.2.6 核方法(Kernel Methods)

内核支持向量机,多类和多标签向量机、序列最小优化、最小二乘学习、概率学习。Including special methods for linear machines such as LIBLINEAR's methods for Linear Coordinate Descent , Linear Newton Method , Probabilistic Coordinate Descent , Probabilistic Coordinate Descent in the Dual , Probabilistic Newton Method for L1 and L2 machines in both the dual and primal formulations .

1.2.7 图像(Imaging)

兴趣和特征点探测器如Harris,FREAK,SURF,FAST。灰度共生矩阵,Border following,Bag-of-Visual-Words (BoW),RANSAC-based homography estimation , integral images , haralick textural feature extraction , and dense descriptors such as histogram of oriented gradients (HOG) and Local Binary Pattern (LBP).Several image filters for image processing applications such as difference of Gaussians , Gabor , Niblack and Sauvola thresholding。还有几个图像处理中经常用到的图像过滤器。

1.2.8 音频信号(Audio and Signal)

音频信号的加载、解析、保存、过滤和转换,如在空间域和频域应用音频过滤器。WAV文件、音频捕捉、时域滤波器,高通,低通,波整流过滤器。Frequency-domain operators such as differential rectification filter and comb filter with Dirac's delta functions . Signal generators for Cosine , Impulse , Square signals.

1.2.9 视觉(Vision)

实时人脸检测和跟踪,以及图像流中检测、跟踪、转换的一般的检测方法。Contains cascade definitions , Camshift and Dynamic Template Matching trackers . Includes pre-created classifiers for human faces and some facial features such as noses。

1.3 相关资源

    从项目主页:http://accord-framework.net/下载的“Archive”压缩包中,包括了几乎所有的在线资源。如下图,介绍几个主要的资源:

    Debug是一些用于调试的程序集,Docs是帮助文档,Externals是一些辅助的组件,Release是不同.NET环境的Dll程序集版本,Samples是案例源代码,Setup是安装的程序,Sources是项目的源代码,Unit Tests是单元测试代码。

Accord.NET框架源代码托管在GitHub:

https://github.com/accord-net/framework/

上面有大量的入门资源和教程,例如,查看页面右边的列表栏切换:

https://github.com/accord-net/framework/wiki/How-to-use


本文转自叶小钗 h数据之巅博客园博客,原文链接:http://www.cnblogs.com/asxinyu/p/dotnet_Opensource_project_AccordNET.html,如需转载请自行联系原作者


相关文章
|
27天前
|
机器学习/深度学习 人工智能 Cloud Native
在数字化时代,.NET 技术凭借其跨平台兼容性、丰富的类库和工具集以及卓越的性能与效率,成为软件开发的重要平台
在数字化时代,.NET 技术凭借其跨平台兼容性、丰富的类库和工具集以及卓越的性能与效率,成为软件开发的重要平台。本文深入解析 .NET 的核心优势,探讨其在企业级应用、Web 开发及移动应用等领域的应用案例,并展望未来在人工智能、云原生等方面的发展趋势。
32 3
|
1月前
|
存储 设计模式 编解码
.NET 8.0 通用管理平台,支持模块化、WinForms 和 WPF
【11月更文挑战第5天】本文分析了.NET 8.0 通用管理平台在模块化、WinForms 和 WPF 方面的优势。模块化设计提升了系统的可维护性和可扩展性,提高了代码复用性;WinForms 提供了丰富的控件库和简单易用的开发模式,技术成熟稳定;WPF 支持强大的数据绑定和 MVVM 模式,具备丰富的图形和动画功能,以及灵活的布局系统。
|
3月前
|
机器学习/深度学习 人工智能 算法
ML.NET:一个.NET开源、免费、跨平台的机器学习框架
ML.NET:一个.NET开源、免费、跨平台的机器学习框架
|
4月前
|
机器学习/深度学习 PyTorch TensorFlow
机器学习框架调研
机器学习框架调研
41 1
|
4月前
|
机器学习/深度学习 JSON API
【Python奇迹】FastAPI框架大显神通:一键部署机器学习模型,让数据预测飞跃至Web舞台,震撼开启智能服务新纪元!
【8月更文挑战第16天】在数据驱动的时代,高效部署机器学习模型至关重要。FastAPI凭借其高性能与灵活性,成为搭建模型API的理想选择。本文详述了从环境准备、模型训练到使用FastAPI部署的全过程。首先,确保安装了Python及相关库(fastapi、uvicorn、scikit-learn)。接着,以线性回归为例,构建了一个预测房价的模型。通过定义FastAPI端点,实现了基于房屋大小预测价格的功能,并介绍了如何运行服务器及测试API。最终,用户可通过HTTP请求获取预测结果,极大地提升了模型的实用性和集成性。
280 1
|
4月前
|
开发者 API Windows
从怀旧到革新:看WinForms如何在保持向后兼容性的前提下,借助.NET新平台的力量实现自我进化与应用现代化,让经典桌面应用焕发第二春——我们的WinForms应用转型之路深度剖析
【8月更文挑战第31天】在Windows桌面应用开发中,Windows Forms(WinForms)依然是许多开发者的首选。尽管.NET Framework已演进至.NET 5 及更高版本,WinForms 仍作为核心组件保留,支持现有代码库的同时引入新特性。开发者可将项目迁移至.NET Core,享受性能提升和跨平台能力。迁移时需注意API变更,确保应用平稳过渡。通过自定义样式或第三方控件库,还可增强视觉效果。结合.NET新功能,WinForms 应用不仅能延续既有投资,还能焕发新生。 示例代码展示了如何在.NET Core中创建包含按钮和标签的基本窗口,实现简单的用户交互。
77 0
|
4月前
|
机器学习/深度学习 PyTorch TensorFlow
NumPy 与机器学习框架的集成
【8月更文第30天】NumPy 是 Python 中用于科学计算的核心库之一,它提供了高效的多维数组对象,以及用于操作数组的大量函数。NumPy 的高效性和灵活性使其成为许多机器学习框架的基础。本文将探讨 NumPy 如何与 TensorFlow 和 PyTorch 等流行机器学习框架协同工作,并通过具体的代码示例来展示它们之间的交互。
65 0
|
4月前
|
机器学习/深度学习 数据采集 测试技术
利用Python实现简单的机器学习模型软件测试的艺术与科学:探索自动化测试框架的奥秘
【8月更文挑战第27天】在本文中,我们将一起探索如何通过Python编程语言创建一个简单的机器学习模型。我们将使用scikit-learn库中的线性回归模型作为示例,并通过一个实际的数据集来训练我们的模型。文章将详细解释每一步的过程,包括数据预处理、模型训练和预测结果的评估。最后,我们会用代码块展示整个过程,确保读者能够跟随步骤实践并理解每个阶段的重要性。
|
7月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
250 14
|
7月前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)