易观智库:大数据下的用户分析及用户画像(18页PPT附下载)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 大数据下,用户分析的核心是什么? ——解决实际问题确定用户分析目的,具体是为了降低成本?增加收入?优化用户体验?提升营销效果?用户针对性管理?确定目的后开始选择合适的数据,然后搭建模型,最后得出结果,并用数据可视化解读。

大数据下,用户分析的核心是什么? ——解决实际问题

确定用户分析目的,具体是为了降低成本?增加收入?优化用户体验?提升营销效果?用户针对性管理?

确定目的后开始选择合适的数据,然后搭建模型,最后得出结果,并用数据可视化解读。

大数据时代,用户数据使用成为企业发展的重中之重

数据基础平台:

1、用户唯一+ 用户行为ID + 用户画像 + 用户兴趣

2、数据接入系统计算任务调度系统+ 元数

完善产品运营,提升用户体验:

1、业务运营监控

异动智能分析
金字塔体系
用户路径分析
数据体系

2、用户/客户体验优化

产品体验分析
口碑监测
用户/客户体验研究

对外服务,提升盈利

3、对外服务,提升盈利

精细化营销
个性化推荐
用户生命周期管理
活动效果提升
自助提取和分析工具

4、数据服务

数据分析产品化
分析结果可视化
分析结果实时化

战略分析

业务经营分析
收入分析
竞争分析
用户维护

用户数据的构成——用户画像基础数据

1、网络行为数据指标

活跃人数
访问/启动次数
页面浏览量
访问时长
装机量
激活率
渗透率
外部触点

2、网站内行为数据指标

唯一页面浏览次数
页面停留时间
直接跳出访问数
访问深度
进入或离开页面
浏览路径
评论次数与内容

3、用户内容偏好数据指标

使用APP/登陆网站
时间/频次
浏览/收藏内容
评论内容
互动内容
用户生活形态偏好
用户品牌偏好
用户地理位置

4、用户交易数据指标

贡献率
客单件/客单价
连带率
回头率
流失率
促销活动转化率
唤醒率

下面是详细的PPT,最后附下载:

大数据大数据大数据大数据大数据大数据大数据大数据大数据大数据大数据大数据大数据大数据大数据大数据大数据大数据

文档下载:大数据下的用户分析.pdf

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
3天前
|
存储 大数据 测试技术
用于大数据分析的数据存储格式:Parquet、Avro 和 ORC 的性能和成本影响
在大数据环境中,数据存储格式直接影响查询性能和成本。本文探讨了 Parquet、Avro 和 ORC 三种格式在 Google Cloud Platform (GCP) 上的表现。Parquet 和 ORC 作为列式存储格式,在压缩和读取效率方面表现优异,尤其适合分析工作负载;Avro 则适用于需要快速写入和架构演化的场景。通过对不同查询类型(如 SELECT、过滤、聚合和联接)的基准测试,本文提供了在各种使用案例中选择最优存储格式的建议。研究结果显示,Parquet 和 ORC 在读取密集型任务中更高效,而 Avro 更适合写入密集型任务。正确选择存储格式有助于显著降低成本并提升查询性能。
23 1
用于大数据分析的数据存储格式:Parquet、Avro 和 ORC 的性能和成本影响
|
18天前
|
分布式计算 Hadoop 大数据
Jupyter 在大数据分析中的角色
【8月更文第29天】Jupyter Notebook 提供了一个交互式的开发环境,它不仅适用于 Python 编程语言,还能够支持其他语言,包括 Scala 和 R 等。这种多语言的支持使得 Jupyter 成为大数据分析领域中非常有价值的工具,特别是在与 Apache Spark 和 Hadoop 等大数据框架集成方面。本文将探讨 Jupyter 如何支持这些大数据框架进行高效的数据处理和分析,并提供具体的代码示例。
28 0
|
10天前
|
存储 大数据 数据挖掘
【数据新纪元】Apache Doris:重塑实时分析性能,解锁大数据处理新速度,引爆数据价值潜能!
【9月更文挑战第5天】Apache Doris以其卓越的性能、灵活的架构和高效的数据处理能力,正在重塑实时分析的性能极限,解锁大数据处理的新速度,引爆数据价值的无限潜能。在未来的发展中,我们有理由相信Apache Doris将继续引领数据处理的潮流,为企业提供更快速、更准确、更智能的数据洞察和决策支持。让我们携手并进,共同探索数据新纪元的无限可能!
54 11
|
17天前
|
大数据 机器人 数据挖掘
这个云ETL工具配合Python轻松实现大数据集分析,附案例
这个云ETL工具配合Python轻松实现大数据集分析,附案例
|
15天前
|
存储 分布式计算 数据处理
MaxCompute 的成本效益分析与优化策略
【8月更文第31天】随着云计算技术的发展,越来越多的企业选择将数据处理和分析任务迁移到云端。阿里云的 MaxCompute 是一款专为海量数据设计的大规模数据仓库平台,它不仅提供了强大的数据处理能力,还简化了数据管理的工作流程。然而,在享受这些便利的同时,企业也需要考虑如何有效地控制成本,确保资源得到最优利用。本文将探讨如何评估 MaxCompute 的使用成本,并提出一些优化策略以降低费用,提高资源利用率。
15 0
|
15天前
|
存储 分布式计算 大数据
MaxCompute 数据分区与生命周期管理
【8月更文第31天】随着大数据分析需求的增长,如何高效地管理和组织数据变得至关重要。阿里云的 MaxCompute(原名 ODPS)是一个专为海量数据设计的计算服务,它提供了丰富的功能来帮助用户管理和优化数据。本文将重点讨论 MaxCompute 中的数据分区策略和生命周期管理方法,并通过具体的代码示例来展示如何实施这些策略。
45 1
|
21天前
数据平台问题之在数据影响决策的过程中,如何实现“决策/行动”阶段
数据平台问题之在数据影响决策的过程中,如何实现“决策/行动”阶段
|
24天前
|
存储 监控 安全
大数据架构设计原则:构建高效、可扩展与安全的数据生态系统
【8月更文挑战第23天】大数据架构设计是一个复杂而系统的工程,需要综合考虑业务需求、技术选型、安全合规等多个方面。遵循上述设计原则,可以帮助企业构建出既高效又安全的大数据生态系统,为业务创新和决策支持提供强有力的支撑。随着技术的不断发展和业务需求的不断变化,持续优化和调整大数据架构也将成为一项持续的工作。
|
27天前
|
分布式计算 DataWorks 关系型数据库
DataWorks产品使用合集之ODPS数据怎么Merge到MySQL数据库
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
1月前
|
消息中间件 数据采集 JSON
大数据 - DWD&DIM 行为数据
大数据 - DWD&DIM 行为数据
33 1

热门文章

最新文章