从一个集合中查找最大最小的N个元素——Python heapq 堆数据结构

简介: Top N问题在搜索引擎、推荐系统领域应用很广, 如果用我们较为常见的语言,如C、C++、Java等,代码量至少也得五行,但是用Python的话,只用一个函数就能搞定,只需引入heapq(堆队列)这个数据结构即可。

Top N问题在搜索引擎、推荐系统领域应用很广, 如果用我们较为常见的语言,如C、C++、Java等,代码量至少也得五行,但是用Python的话,只用一个函数就能搞定,只需引入heapq(堆队列)这个数据结构即可。今天偶然看到这个库,特意记下之。

先看一个例子:

1 >>> import heapq
2 >>> nums = [1,8,2,23,7,-4,18,23,42,37,2]
3 >>> print heapq.nlargest(3, nums)
4 [42, 37, 23]
5 >>> 
6 >>> print heapq.nsmallest(3, nums)
7 [-4, 1, 2]

是不是很简洁?
我们具体来看一下具体的函数定义。heapq有很多函数,最为堆,队列,可想而知,也就是那些push,pop之类的操作,详细请看官方文档:https://docs.python.org/2/library/heapq.html,在这里,我们只看Top N的两个函数,其他函数在用到的时候查看文档就好了。

1)、heapq.nlargest(n, iterable[, key])

从迭代器对象iterable中返回前n个最大的元素列表,其中关键字参数key用于匹配是字典对象的iterable,用于更复杂的数据结构中。

2)、heapq.nsmallest(n, iterable[, key])

从迭代器对象iterable中返回前n个最小的元素列表,其中关键字参数key用于匹配是字典对象的iterable,用于更复杂的数据结构中。

关于第三个参数的应用,我们来看一个例子就明白了。

 1 >>> portfolio = [
 2     {'name': 'IBM', 'shares': 100, 'price': 91.1},
 3     {'name': 'AAPL', 'shares': 50, 'price': 543.22},
 4     {'name': 'FB', 'shares': 200, 'price': 21.09},
 5     {'name': 'HPQ', 'shares': 35, 'price': 31.75},
 6     {'name': 'YHOO', 'shares': 45, 'price': 16.35},
 7     {'name': 'ACME', 'shares': 75, 'price': 115.65}
 8 ]
 9 ... ... ... ... ... ... ... >>> 
10 >>> cheap = heapq.nsmallest(3, portfolio, key=lambda s: s['price'])
11 >>> print cheap
12 [{'price': 16.35, 'name': 'YHOO', 'shares': 45}, {'price': 21.09, 'name': 'FB', 'shares': 200}, {'price': 31.75, 'name': 'HPQ', 'shares': 35}]
13 >>> expensive = heapq.nlargest(3, portfolio, key=lambda s: s['price'])
14 >>> print expensive
15 [{'price': 543.22, 'name': 'AAPL', 'shares': 50}, {'price': 115.65, 'name': 'ACME', 'shares': 75}, {'price': 91.1, 'name': 'IBM', 'shares': 100}]
16 >>> 

从例子中可以看出,key匹配了portfolio中关键字为‘price’的一行。
到此为止,关于如何应用heapq来求Top N问题,相比通过上面的例子讲解,已经较为熟悉了。现在有几个需要注意的地方:

1)heapq.heapify(iterable):可以将一个列表转换成heapq

2)在Top N问题中,如果N=1,则直接用max(iterable)/min(iterable)即可。

3)如果N很大,接近集合元素,则为了提高效率,采用sort+切片的方式会更好,如:

求最大的N个元素:sorted(iterable, key=key, reverse=True)[:N]

求最小的N个元素:sorted(iterable, key=key)[:N]

1 >>> nums = [1,8,2,23,7,-4,18,23,42,37,2]
2 >>> max(nums)
3 42
4 >>> min(nums)
5 -4
6 >>> print sorted(nums, reverse=True)[:3]
7 [42, 37, 23]
8 >>> print sorted(nums)[:3]
9 [-4, 1, 2]

 

目录
相关文章
|
2月前
|
Java 数据处理 索引
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
243 0
|
3月前
|
存储 JSON 算法
Python集合:高效处理无序唯一数据的利器
Python集合是一种高效的数据结构,具备自动去重、快速成员检测和无序性等特点,适用于数据去重、集合运算和性能优化等场景。本文通过实例详解其用法与技巧。
131 0
|
4月前
|
存储 索引 Python
python 集合的所有基础知识
python 集合的所有基础知识
199 0
|
2月前
|
存储 Java 索引
(Python基础)新时代语言!一起学习Python吧!(二):字符编码由来;Python字符串、字符串格式化;list集合和tuple元组区别
字符编码 我们要清楚,计算机最开始的表达都是由二进制而来 我们要想通过二进制来表示我们熟知的字符看看以下的变化 例如: 1 的二进制编码为 0000 0001 我们通过A这个字符,让其在计算机内部存储(现如今,A 字符在地址通常表示为65) 现在拿A举例: 在计算机内部 A字符,它本身表示为 65这个数,在计算机底层会转为二进制码 也意味着A字符在底层表示为 1000001 通过这样的字符表示进行转换,逐步发展为拥有127个字符的编码存储到计算机中,这个编码表也被称为ASCII编码。 但随时代变迁,ASCII编码逐渐暴露短板,全球有上百种语言,光是ASCII编码并不能够满足需求
157 4
|
3月前
|
机器学习/深度学习 数据采集 并行计算
多步预测系列 | LSTM、CNN、Transformer、TCN、串行、并行模型集合研究(Python代码实现)
多步预测系列 | LSTM、CNN、Transformer、TCN、串行、并行模型集合研究(Python代码实现)
342 2
|
6月前
|
存储 安全 Java
Java 集合面试题从数据结构到 HashMap 源码剖析详解及长尾考点梳理
本文深入解析Java集合框架,涵盖基础概念、常见集合类型及HashMap的底层数据结构与源码实现。从Collection、Map到Iterator接口,逐一剖析其特性与应用场景。重点解读HashMap在JDK1.7与1.8中的数据结构演变,包括数组+链表+红黑树优化,以及put方法和扩容机制的实现细节。结合订单管理与用户权限管理等实际案例,展示集合框架的应用价值,助你全面掌握相关知识,轻松应对面试与开发需求。
308 3
|
8月前
|
存储 缓存 安全
Python frozenset 集合详解:不可变集合的终极指南
frozenset是Python中一个常被忽视但极具价值的不可变集合类型。本文深入解析其本质、操作方法与应用场景,揭示其通过不可变性带来的安全性与性能优势。从底层实现到实战案例,涵盖字典键使用、缓存优化及类型注解等高级场景。同时对比性能数据,提供最佳实践指南,并展望Python 3.11+中的优化。掌握frozenset,可为代码带来更强健性与效率,适合多种特定需求场景。
299 5
|
9月前
|
存储 人工智能 索引
Python数据结构:列表、元组、字典、集合
Python 中的列表、元组、字典和集合是常用数据结构。列表(List)是有序可变集合,支持增删改查操作;元组(Tuple)与列表类似但不可变,适合存储固定数据;字典(Dictionary)以键值对形式存储,无序可变,便于快速查找和修改;集合(Set)为无序不重复集合,支持高效集合运算如并集、交集等。根据需求选择合适的数据结构,可提升代码效率与可读性。
|
11月前
|
存储 算法 测试技术
【C++数据结构——线性表】求集合的并、交和差运算(头歌实践教学平台习题)【合集】
本任务要求编写程序求两个集合的并集、交集和差集。主要内容包括: 1. **单链表表示集合**:使用单链表存储集合元素,确保元素唯一且无序。 2. **求并集**:遍历两个集合,将所有不同元素加入新链表。 3. **求交集**:遍历集合A,检查元素是否在集合B中存在,若存在则加入结果链表。 4. **求差集**:遍历集合A,检查元素是否不在集合B中,若满足条件则加入结果链表。 通过C++代码实现上述操作,并提供测试用例验证结果。测试输入为两个集合的元素,输出为有序集合A、B,以及它们的并集、交集和差集。 示例测试输入: ``` a c e f a b d e h i ``` 预期输出:
311 7
|
Python
Python堆排序介绍与力扣三道堆相关题目分享
Python堆排序介绍与力扣三道堆相关题目分享
294 0

热门文章

最新文章

推荐镜像

更多