从一个集合中查找最大最小的N个元素——Python heapq 堆数据结构

简介: Top N问题在搜索引擎、推荐系统领域应用很广, 如果用我们较为常见的语言,如C、C++、Java等,代码量至少也得五行,但是用Python的话,只用一个函数就能搞定,只需引入heapq(堆队列)这个数据结构即可。

Top N问题在搜索引擎、推荐系统领域应用很广, 如果用我们较为常见的语言,如C、C++、Java等,代码量至少也得五行,但是用Python的话,只用一个函数就能搞定,只需引入heapq(堆队列)这个数据结构即可。今天偶然看到这个库,特意记下之。

先看一个例子:

1 >>> import heapq
2 >>> nums = [1,8,2,23,7,-4,18,23,42,37,2]
3 >>> print heapq.nlargest(3, nums)
4 [42, 37, 23]
5 >>> 
6 >>> print heapq.nsmallest(3, nums)
7 [-4, 1, 2]

是不是很简洁?
我们具体来看一下具体的函数定义。heapq有很多函数,最为堆,队列,可想而知,也就是那些push,pop之类的操作,详细请看官方文档:https://docs.python.org/2/library/heapq.html,在这里,我们只看Top N的两个函数,其他函数在用到的时候查看文档就好了。

1)、heapq.nlargest(n, iterable[, key])

从迭代器对象iterable中返回前n个最大的元素列表,其中关键字参数key用于匹配是字典对象的iterable,用于更复杂的数据结构中。

2)、heapq.nsmallest(n, iterable[, key])

从迭代器对象iterable中返回前n个最小的元素列表,其中关键字参数key用于匹配是字典对象的iterable,用于更复杂的数据结构中。

关于第三个参数的应用,我们来看一个例子就明白了。

 1 >>> portfolio = [
 2     {'name': 'IBM', 'shares': 100, 'price': 91.1},
 3     {'name': 'AAPL', 'shares': 50, 'price': 543.22},
 4     {'name': 'FB', 'shares': 200, 'price': 21.09},
 5     {'name': 'HPQ', 'shares': 35, 'price': 31.75},
 6     {'name': 'YHOO', 'shares': 45, 'price': 16.35},
 7     {'name': 'ACME', 'shares': 75, 'price': 115.65}
 8 ]
 9 ... ... ... ... ... ... ... >>> 
10 >>> cheap = heapq.nsmallest(3, portfolio, key=lambda s: s['price'])
11 >>> print cheap
12 [{'price': 16.35, 'name': 'YHOO', 'shares': 45}, {'price': 21.09, 'name': 'FB', 'shares': 200}, {'price': 31.75, 'name': 'HPQ', 'shares': 35}]
13 >>> expensive = heapq.nlargest(3, portfolio, key=lambda s: s['price'])
14 >>> print expensive
15 [{'price': 543.22, 'name': 'AAPL', 'shares': 50}, {'price': 115.65, 'name': 'ACME', 'shares': 75}, {'price': 91.1, 'name': 'IBM', 'shares': 100}]
16 >>> 

从例子中可以看出,key匹配了portfolio中关键字为‘price’的一行。
到此为止,关于如何应用heapq来求Top N问题,相比通过上面的例子讲解,已经较为熟悉了。现在有几个需要注意的地方:

1)heapq.heapify(iterable):可以将一个列表转换成heapq

2)在Top N问题中,如果N=1,则直接用max(iterable)/min(iterable)即可。

3)如果N很大,接近集合元素,则为了提高效率,采用sort+切片的方式会更好,如:

求最大的N个元素:sorted(iterable, key=key, reverse=True)[:N]

求最小的N个元素:sorted(iterable, key=key)[:N]

1 >>> nums = [1,8,2,23,7,-4,18,23,42,37,2]
2 >>> max(nums)
3 42
4 >>> min(nums)
5 -4
6 >>> print sorted(nums, reverse=True)[:3]
7 [42, 37, 23]
8 >>> print sorted(nums)[:3]
9 [-4, 1, 2]

 

目录
相关文章
|
1月前
|
算法 开发者 计算机视觉
燃爆全场!Python并查集:数据结构界的网红,让你的代码炫酷无比!
在编程的世界里,总有一些数据结构以其独特的魅力和高效的性能脱颖而出,成为众多开发者追捧的“网红”。今天,我们要介绍的这位明星,就是Python中的并查集(Union-Find)——它不仅在解决特定问题上大放异彩,更以其优雅的设计和强大的功能,让你的代码炫酷无比,燃爆全场!
36 0
|
29天前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
32 4
|
1月前
|
Python
Python 中常见的数据结构(二)
Python 中常见的数据结构(二)
|
1月前
|
存储 索引 Python
Python 中常见的数据结构(一)
Python 中常见的数据结构(一)
|
1月前
|
开发者 Python
Python 常用的数据结构
Python 常用的数据结构
|
1月前
|
算法 安全 Java
【用Java学习数据结构系列】探索Java集合框架的无尽秘密pro
【用Java学习数据结构系列】探索Java集合框架的无尽秘密pro
19 1
|
1月前
|
存储 索引 Python
python数据结构之列表详解
列表是Python中极为灵活和强大的数据结构,适合于存储和操作有序数据集合。掌握其基本操作和高级特性对于编写高效、清晰的Python代码至关重要。通过本回答,希望能帮助你全面理解Python列表的使用方法,从而在实际编程中更加游刃有余。
20 0
|
1月前
|
存储 Python
Python 中常见的数据结构(三)
Python 中常见的数据结构(三)
|
1月前
|
算法 Python
逆袭之路!用 Python 玩转图的 DFS 与 BFS,让数据结构难题无处遁形
在数据结构的广袤领域中,图是一种强大而复杂的结构,而深度优先搜索(DFS)和广度优先搜索(BFS)则是遍历图的两把利剑。Python 以其简洁和强大的特性,为我们提供了实现和运用这两种算法的便捷途径。
70 0
|
1月前
|
程序员 Python 容器
python 中的 collections 模块:常用数据结构和工具详解
python 中的 collections 模块:常用数据结构和工具详解
13 0

热门文章

最新文章