The Ideal Programmer

简介:
 Mike Williams 第一个Erlang VM (JAM)的开发者;下面是他在2012年的一个分享 "The Ideal Programmer - Why They Don't Exist and How to Manage Without Them?",Mike Williams 描述了在他眼中比较理想的开发者应该具备什么样的素质,以及在团队中,成员之间的互补关系.49分钟的演讲相当精彩;幸运的是我们可以在InfoQ获得对应的视频和音频下载,能够了解PPT的上下文语境.
 

 
 
PPT下载:
 
 
 
InfoQ 视频 音频下载:
 
 
 
PPT最后引出的那篇文章链接已经失效,下面这个是可用的:      A RATIONAL DESIGN PROCESS: HOW AND WHY TO FAKE IT  
目录
相关文章
|
定位技术
German collegiate programming contest 2012 - Ski Jumping
首先用动能定理算出平抛的初速度v0,然后分三种情况,0~L/2,L/2~L,L~无穷远。
135 0
German collegiate programming contest 2012 - Ski Jumping
|
Java Go Kotlin
For an experienced software engineer, what would be a preferred new programming language to learn?
For an experienced software engineer, what would be a preferred new programming language to learn? Chanaka Fernando, knows Sin...
1114 0
|
Windows
English Contest -- The Programmer's Dream
<p></p> <p>Yes, The Programmer’s Dream!</p> <p>How many programmers here? I am sure of that every body here has a dream inside. What’s the biggest dream or goal you have in your life at this mom
1697 0
|
机器学习/深度学习
[Everyday Mathematics]20150301
设 $f(x)$ 在 $[-1,1]$ 上有任意阶导数, $f^{(n)}(0)=0$, 其中 $n$ 是任意正整数, 且存在 $C>0$, $$\bex |f^{(n)}(x)|\leq C^nn!,\quad \forall\ n\in\bbN,\quad \forall\ x\in[-1,1].
658 0
[Everyday Mathematics]20150225
设 $f:\bbR\to\bbR$ 二次可微, 适合 $f(0)=0$. 试证: $$\bex \exists\ \xi\in\sex{-\frac{\pi}{2},\frac{\pi}{2}},\st f''(\xi)=f(\xi)(1+2\tan^2\xi). \eex$$
765 0
[Everyday Mathematics]20150207
求极限 $$\bex \lim_{x\to+\infty}\sex{\sqrt{x+\sqrt{x+\sqrt{x^\al}}}-\sqrt{x}},\quad\sex{0
496 0
[Everyday Mathematics]20150204
设 $k_0>0$, $\phi:[k_0,\infty)\to[0,\infty)$ 是有界递减函数, 并且 $$\bex \phi(k)\leq \frac{A}{(k-h)^\al}\phi(h)^\beta,\quad k>h>k_0, \eex$$ 其中 $A,\al>0$, $0h>k_0.
677 0
[Everyday Mathematics]20150130
计算下列积分 $$\bex \int_0^\infty \frac{\sin^3x}{x^3}\rd x. \eex$$
678 0
[Everyday Mathematics]20150122
设 $f:[0,1]\to [0,1]$.   (1). 若 $f$ 连续, 试证: $\exists\ \xi\in [0,1],\st f(\xi)=\xi$.   (2). 若 $f$ 单调递增, 试证: $\exists\ \xi\in [0,1],\st f(\xi)=\xi$.
748 0