atcoder AtCoder Beginner Contest 210 D - National Railway(dp)

简介: atcoder AtCoder Beginner Contest 210 D - National Railway(dp)

传送门

思路:

首先考虑暴力的做法,枚举两个点计算距离后取最小值,复杂度O ( n 4 )

考虑怎么优化。

首先可以确定的是,一定要枚举一个点,那么可以通过控制坐标的大小关系将绝对值去掉。

假设对于点( i , j ),只考虑点( x , y )满足i < = x < = n , j < = y < = m

那么代价就变成了a[i][j]+a[x][y]+c(xi)+c(yj)

拆开得到

a [ i ] [ j ] − c ∗ i − c ∗ j + a [ x ] [ y ] + c ∗ x + c ∗ y

对于点( i , j )的贡献a [ i ] [ j ] − c ∗ i − c ∗ j,可以通过枚举计算;

对于点( x , y )的贡献a [ x ] [ y ] + c ∗ x + c ∗ y,由于题目要求代价最小,所以应当维护最小值。

也就是说d p [ i ] [ j ]表示的是对于满足i < = x < = n , j < = y < = m的所有的点( x , y )的贡献a [ x ] [ y ] + c ∗ x + c ∗ y的最小值。

所以每次枚举到( i , j )时,只需要假定这个点必选,再加上d p [ i ] [ j ]表示上一个点的贡献,所有的答案取最小值即可,注意更新完答案后应当更新d p数组。

这样会产生的一个问题就是,只是考虑了两个点的位置大致是呈左上-右下的趋势的情况,如果一个点在右上,另一个点在左下,这种情况没有被枚举到。

所以还应该再跑一遍,基本流程同上文类似。

代码:

又臭又长的垃圾代码:(下一个是比较简洁的代码!)

ll n,m,c,a[1100][1100],dp[1100][1100],dp1[1100][1100];
int main(){
  n=read,m=read,c=read;
  rep(i,1,n) rep(j,1,m) a[i][j]=read;
  rep(i,0,n+1) rep(j,0,m+1) dp[i][j]=1e18,dp1[i][j]=1e18;
  ll res=1e18;
  for(int i=n;i;i--)
    for(int j=m;j;j--){
      ll now=a[i][j]-c*i-c*j;
      ll las=1e18;
      if(i+1<=n&&j+1<=m) las=min(las,dp[i+1][j+1]);
      if(i+1<=n) las=min(las,dp[i+1][j]);
      if(j+1<=m) las=min(las,dp[i][j+1]);
      res=min(res,now+las);
      dp[i][j]=min(dp[i][j],a[i][j]+c*i+c*j);
      if(i+1<=n&&j+1<=m) dp[i][j]=min(dp[i][j],dp[i+1][j+1]);
      if(i+1<=n) dp[i][j]=min(dp[i][j],dp[i+1][j]);
      if(j+1<=m) dp[i][j]=min(dp[i][j],dp[i][j+1]);
    }
  for(int i=1;i<=n;i++){
    for(int j=m;j;j--){
      ll now=a[i][j]+c*i-c*j;
      ll las=1e18;
      if(i-1>=1&&j+1<=m) las=min(las,dp1[i-1][j+1]);
      if(i-1>=1) las=min(las,dp1[i-1][j]);
      if(j+1<=m) las=min(las,dp1[i][j+1]);
      res=min(res,now+las);
      dp1[i][j]=min(dp1[i][j],a[i][j]-c*i+c*j);
      if(i-1>=1&&j+1<=m) dp1[i][j]=min(dp1[i][j],dp1[i-1][j+1]);
      if(i-1>=1) dp1[i][j]=min(dp1[i][j],dp1[i-1][j]);
      if(j+1<=m) dp1[i][j]=min(dp1[i][j],dp1[i][j+1]);
    }
  }
  printf("%lld\n",res);
  return 0;
}

跟我的思路类似但是代码超级简洁的巨巨代码:

#include <iostream>
#include <algorithm>
#include <vector>
#include <cstring>
#include <cstdio>
#define endl '\n'
#define int long long
#define pb push_back
#define mp make_pair
#define INF 0x3f3f3f3f
#define Inf 1000000000000000000LL
#define F first
#define S second
using namespace std;
typedef pair<int,int>pii;
int n,m,C;
int a[1010][1010];
int dp[1010][1010];
int ans=0x3f3f3f3f3f3f3f3f;
void DP(){
  memset(dp,0x3f,sizeof dp);
  for(int i=1;i<=n;i++){
    for(int j=1;j<=m;j++){
      dp[i][j]=min(dp[i][j-1],dp[i-1][j]);
      ans=min(ans,dp[i][j]+a[i][j]+C*(i+j));
      dp[i][j]=min(dp[i][j],a[i][j]-C*(i+j));
    }
  }
}
signed main(){
  cin>>n>>m>>C;
  for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
      cin>>a[i][j];
  DP();
  for(int i=1;i<=n;i++){
    int l=1,r=m;
    while(l<r){
      swap(a[i][l],a[i][r]);
      l++,r--;
    }
  }
  DP();
  cout<<ans<<endl;
  return 0;
}

赛时写假了边界,宇巨一波奇技淫巧强行AC的代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll, ll>PLL;
typedef pair<int, int>PII;
typedef pair<double, double>PDD;
#define I_int ll
inline ll read()
{
    ll x = 0, f = 1;
    char ch = getchar();
    while(ch < '0' || ch > '9')
    {
        if(ch == '-')f = -1;
        ch = getchar();
    }
    while(ch >= '0' && ch <= '9')
    {
        x = x * 10 + ch - '0';
        ch = getchar();
    }
    return x * f;
}
inline void out(ll x){
  if (x < 0) x = ~x + 1, putchar('-');
  if (x > 9) out(x / 10);
  putchar(x % 10 + '0');
}
inline void write(ll x){
  if (x < 0) x = ~x + 1, putchar('-');
  if (x > 9) write(x / 10);
  putchar(x % 10 + '0');
  puts("");
}
#define read read()
#define closeSync ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define multiCase int T;cin>>T;for(int t=1;t<=T;t++)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i<(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define perr(i,a,b) for(int i=(a);i>(b);i--)
ll ksm(ll a, ll b, ll p)
{
    ll res = 1;
    while(b)
    {
        if(b & 1)res = res * a % p;
        a = a * a % p;
        b >>= 1;
    }
    return res;
}
const int inf = 0x3f3f3f3f;
#define PI acos(-1)
const int maxn=4e5+100;
ll n,m,c,a[1100][1100],dp[1100][1100],dp1[1100][1100];
struct Node{
  ll x,y,val;
}t[1000009];
bool cmp(Node x,Node y)
{
  return x.val<y.val;
}
int main(){
  n=read,m=read,c=read;
  ll cnt=0;
  rep(i,1,n) rep(j,1,m) {
    a[i][j]=read,dp[i][j]=1e18,dp1[i][j]=1e18;
    t[++cnt] = {i,j,a[i][j]};
    }
  if(n*m<=30000)
  {
    ll anss = 1e18;
    sort(t+1,t+1+cnt,cmp);
    rep(i,1,min(n*m,30000ll))   rep(j,1,min(n*m,30000ll))
    {
      if(i==j) continue;
      ll x1,y1,x2,y2,val1,val2;
      x1 = t[i].x,y1 = t[i].y,val1 = t[i].val;
      x2 = t[j].x,y2 = t[j].y,val2 = t[j].val;
      ll temp = c*(abs(x1-x2)+abs(y1-y2)) +val1+val2;
      anss = min(anss,temp);
    }
    printf("%lld",anss);
    return 0;
  }
  ll res=1e18;
  for(int i=n;i;i--)
    for(int j=m;j;j--){
      if(i==n&&j==m){
        dp[i][j]=a[i][j]+c*i+c*j;
        continue;
      }
      ll now=a[i][j]-c*i-c*j;
      ll las=1e18;
      if(i+1<=n&&j+1<=m) las=min(las,dp[i+1][j+1]);
      if(i+1<=n) las=min(las,dp[i+1][j]);
      if(j+1<=m) las=min(las,dp[i][j+1]);
      res=min(res,now+las);
      dp[i][j]=min(dp[i][j],a[i][j]+c*i+c*j);
      if(i+1<=n&&j+1<=m) dp[i][j]=min(dp[i][j],dp[i+1][j+1]);
      if(i+1<=n) dp[i][j]=min(dp[i][j],dp[i+1][j]);
      if(j+1<=m) dp[i][j]=min(dp[i][j],dp[i][j+1]);
    }
  for(int i=1;i<=n;i++){
    for(int j=m;j;j--){
      if(i==1&&j==m){
        dp1[i][j]=a[i][j]+c*i+c*j;
        continue;
      }
      ll now=a[i][j]+c*i-c*j;
      ll las=1e18;
      if(i-1>=1&&j+1<=m) las=min(las,dp1[i-1][j+1]);
      if(i-1>=1) las=min(las,dp1[i-1][j]);
      if(j+1<=m) las=min(las,dp1[i][j+1]);
      res=min(res,now+las);
      dp1[i][j]=min(dp1[i][j],a[i][j]-c*i+c*j);
      if(i-1>=1&&j+1<=m) dp1[i][j]=min(dp1[i][j],dp1[i-1][j+1]);
      if(i-1>=1) dp1[i][j]=min(dp1[i][j],dp1[i-1][j]);
      if(j+1<=m) dp1[i][j]=min(dp1[i][j],dp1[i][j+1]);
    }
  }
  printf("%lld\n",res);
  return 0;
}
/*
-4999000000****1061109567****3****2
-4999000000****1061109567****2****3
-3937890433
2001000000 3001000000 4000000001 
3001000000 4001000000 5001000000 
4000000001 5001000000 6001000000 
*/


目录
相关文章
The Preliminary Contest for ICPC China Nanchang National Invitational A题 PERFECT NUMBER PROBLEM
The Preliminary Contest for ICPC China Nanchang National Invitational A题 PERFECT NUMBER PROBLEM
75 0
The Preliminary Contest for ICPC China Nanchang National Invitational H题 Coloring Game
The Preliminary Contest for ICPC China Nanchang National Invitational H题 Coloring Game
96 0
|
人工智能
Nordic Collegiate Programming Contest 2020 D.Damsindistress (dp)
Nordic Collegiate Programming Contest 2020 D.Damsindistress (dp)
97 0
AtCoder Beginner Contest 214 F - Substrings(subsequence DP)
AtCoder Beginner Contest 214 F - Substrings(subsequence DP)
100 0
|
机器学习/深度学习 人工智能 Java
AtCoder Beginner Contest 215 D - Coprime 2 (质因子分解 gcd)
AtCoder Beginner Contest 215 D - Coprime 2 (质因子分解 gcd)
115 0
|
机器学习/深度学习
AtCoder Beginner Contest 218 C - Shapes (模拟)
AtCoder Beginner Contest 218 C - Shapes (模拟)
151 0
|
算法
AtCoder Beginner Contest 213 E - Stronger Takahashi(01BFS)
AtCoder Beginner Contest 213 E - Stronger Takahashi(01BFS)
140 0
AtCoder Beginner Contest 176 D - Wizard in Maze(01BFS)
AtCoder Beginner Contest 176 D - Wizard in Maze(01BFS)
120 0

热门文章

最新文章