OpenCV学习(38) 人脸识别(3)

简介: 前面我们学习了基于特征脸的人脸识别,现在我们学习一下基于Fisher脸的人脸识别,Fisher人脸识别基于LDA(线性判别算法)算法,算法的详细介绍可以参考下面两篇教程内容: http://docs.

     

      前面我们学习了基于特征脸的人脸识别,现在我们学习一下基于Fisher脸的人脸识别,Fisher人脸识别基于LDA(线性判别算法)算法,算法的详细介绍可以参考下面两篇教程内容:

http://docs.opencv.org/modules/contrib/doc/facerec/facerec_tutorial.html

LDA算法细节参考:

http://www.cnblogs.com/mikewolf2002/p/3435750.html

 

程序代码:

#include "opencv2/core/core.hpp"
#include "opencv2/contrib/contrib.hpp"
#include "opencv2/highgui/highgui.hpp"

#include <iostream>
#include <fstream>
#include <sstream>

using namespace cv;
using namespace std;

static Mat norm_0_255(InputArray _src)
{
Mat src = _src.getMat();
Mat dst;
switch(src.channels())
{
case 1:
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1);
break;
case 3:
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC3);
break;
default:
src.copyTo(dst);
break;
}
return dst;
}

static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';')
{
std::ifstream file(filename.c_str(), ifstream::in);
if (!file)
{
string error_message = "No valid input file was given, please check the given filename.";
CV_Error(CV_StsBadArg, error_message);
}
string line, path, classlabel;
while (getline(file, line))
{
stringstream liness(line);
getline(liness, path, separator);
getline(liness, classlabel);
if(!path.empty() && !classlabel.empty())
{
images.push_back(imread(path, 0));
labels.push_back(atoi(classlabel.c_str()));
}
}
}

int main(int argc, const char *argv[])
{

string fn_csv = string("facerec_at_t.txt");
vector<Mat> images;
vector<int> labels;

try
{
read_csv(fn_csv, images, labels);
} catch (cv::Exception& e)
{
cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
exit(1);
}

if(images.size() <= 1)
{
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
CV_Error(CV_StsError, error_message);
}

int height = images[0].rows;

Mat testSample = images[images.size() - 1];
int testLabel = labels[labels.size() - 1];

images.pop_back();
labels.pop_back();

Ptr<FaceRecognizer> model = createFisherFaceRecognizer();
model->train(images, labels);
int predictedLabel = model->predict(testSample);

string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel);
cout << result_message << endl;

Mat eigenvalues = model->getMat("eigenvalues");
Mat W = model->getMat("eigenvectors");
Mat mean = model->getMat("mean");
imshow("mean", norm_0_255(mean.reshape(1, images[0].rows)));

for (int i = 0; i < min(16, W.cols); i++)
{
string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i));
cout << msg << endl;
Mat ev = W.col(i).clone();
Mat grayscale = norm_0_255(ev.reshape(1, height));
Mat cgrayscale;
applyColorMap(grayscale, cgrayscale, COLORMAP_BONE);
imshow(format("fisherface_%d", i), cgrayscale);

}

for(int num_component = 0; num_component < min(16, W.cols); num_component++)
{

Mat ev = W.col(num_component);
Mat projection = subspaceProject(ev, mean, images[0].reshape(1,1));
Mat reconstruction = subspaceReconstruct(ev, mean, projection);
reconstruction = norm_0_255(reconstruction.reshape(1, images[0].rows));
imshow(format("fisherface_reconstruction_%d", num_component), reconstruction);

}

while(1)
waitKey(0);
return 0;
}

      从代码中我们可以看到,最大的区别就是创建人脸识别模式类时候,调用的函数不一样,其它代码和特征脸识别的代码一样,对于train和predict函数来说,调用方式完全一样,只是底层的具体算法细节不一样。

    Ptr<FaceRecognizer> model = createFisherFaceRecognizer();

  

     下面是Fisher人脸识别类的train函数,从中可以看到,函数会先调用PCA算法进行降维,之后再执行LDA算法,求得Fisher特征值和特征向量。注意投影矩阵是PCA算法的特征向量和LDA算法特征向量的乘积

    // 先用PCA算法降维perform a PCA and keep (N-C) components

    PCA pca(data, Mat(), CV_PCA_DATA_AS_ROW, (N-C));

    // 把数据投影到 PCA空间,再对该数据执行LDA算法

    LDA lda(pca.project(data),labels, _num_components);

   // 保存总的均值向量

    _mean = pca.mean.reshape(1,1);

    _labels = labels.clone();

    lda.eigenvalues().convertTo(_eigenvalues, CV_64FC1);

   //计算投影矩阵=pca.eigenvectors * lda.eigenvectors.

    // Note: OpenCV stores the eigenvectors by row, so we need to transpose it!

    gemm(pca.eigenvectors, lda.eigenvectors(), 1.0, Mat(), 0.0, _eigenvectors, GEMM_1_T);

    //把原始矩阵投影到新的投影空间

    for(int sampleIdx = 0; sampleIdx < data.rows; sampleIdx++) {

        Mat p = subspaceProject(_eigenvectors, _mean, data.row(sampleIdx));

        _projections.push_back(p);

    }

 

    在程序中,我们仍然使用AT&T Facedatabase数据库的图片,原教程中推荐用Yale Facedatabase A,但是它的图像格式是gif,OpenCV不支持,只好放弃。

程序代码:FirstOpenCV34

相关文章
|
4月前
|
机器学习/深度学习 算法 机器人
|
4月前
|
机器学习/深度学习 人工智能 监控
利用Python和OpenCV实现实时人脸识别系统
【8月更文挑战第31天】本文将引导您了解如何使用Python结合OpenCV库构建一个简易的实时人脸识别系统。通过分步讲解和示例代码,我们将探索如何从摄像头捕获视频流、进行人脸检测以及识别特定个体。本教程旨在为初学者提供一条明晰的学习路径,帮助他们快速入门并实践人脸识别技术。
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
OpenCV与AI深度学习之常用AI名词解释学习
AGI:Artificial General Intelligence (通用人工智能):是指具备与人类同等或超越人类的智能,能够表现出正常人类所具有的所有智能行为。又被称为强人工智能。
133 2
|
6月前
|
人工智能 计算机视觉 Python
人工智能视觉:基于OpenCV的人脸识别技术的深度解析
人工智能视觉:基于OpenCV的人脸识别技术的深度解析
|
5月前
|
机器学习/深度学习 人工智能 计算机视觉
好的资源-----打卡机+Arm+Qt+OpenCV嵌入式项目-基于人脸识别的考勤系统-----B站神经网络与深度学习,商城
好的资源-----打卡机+Arm+Qt+OpenCV嵌入式项目-基于人脸识别的考勤系统-----B站神经网络与深度学习,商城
|
5月前
|
计算机视觉 Python
opencv 处理图像去噪的几种方法学习
OpenCV 提供了多种图像去噪的方法,以下是一些常见的去噪技术以及相应的 Python 代码示例: 均值滤波:使用像素邻域的灰度均值代替该像素的值。
70 0
|
6月前
|
机器学习/深度学习 监控 算法
使用Python和OpenCV实现简单的人脸识别系统
使用Python和OpenCV实现简单的人脸识别系统
71 0
|
2月前
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
412 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
|
3月前
|
算法 计算机视觉
opencv图像形态学
图像形态学是一种基于数学形态学的图像处理技术,它主要用于分析和修改图像的形状和结构。
51 4
|
3月前
|
存储 计算机视觉
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
本文介绍了使用OpenCV进行图像读取、显示和存储的基本操作,以及如何绘制直线、圆形、矩形和文本等几何图形的方法。
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制

热门文章

最新文章