Co-prime
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1668 Accepted Submission(s): 636
Problem Description
Given a number N, you are asked to count the number of integers between A and B inclusive which are relatively prime to N.
Two integers are said to be co-prime or relatively prime if they have no common positive divisors other than 1 or, equivalently, if their greatest common divisor is 1. The number 1 is relatively prime to every integer.
Two integers are said to be co-prime or relatively prime if they have no common positive divisors other than 1 or, equivalently, if their greatest common divisor is 1. The number 1 is relatively prime to every integer.
Input
The first line on input contains T (0 < T <= 100) the number of test cases, each of the next T lines contains three integers A, B, N where (1 <= A <= B <= 10
15) and (1 <=N <= 10
9).
Output
For each test case, print the number of integers between A and B inclusive which are relatively prime to N. Follow the output format below.
Sample Input
2 1 10 2 3 15 5
Sample Output
Case #1: 5 Case #2: 10
题目翻译:T组数据,每组给出A,B,N,求区间【A,B】里面有多少个数与N互质!
解题思路:求出所有的数字的与N不互质的情况,然后用总量减去!求不互质的情况,显然就是利用容斥原理,先求出N的质因子,然后去掉【A,B】中含有这些质因子的数,此时应该注意会重复去掉一些数字,记得加上即可,容斥原理的写法有好几种,感觉每种都很牛,比如用数组实现,DFS实现,以及用位运算实现!
数组实现:
#include<cstdio> #define LL long long LL p[10],k;//p数组用来保存n的质因子,LL型n不会超过10个 void getp(LL n){ k=0; for(LL i=2;i*i<=n;i++){ if(n%i==0) p[k++]=i; while(n%i==0) n/=i; } if(n>1) p[k++]=n;//防止有比根号n大的质因子,k保存质因子个数 } LL nop(LL m){ LL i,j,que[10000],top=0,t,sum; que[top++]=-1;//队列数组保存n所有质因子任意不相同组合的乘积 for(i=0;i<k;i++){ t=top;//t保存当前que长度,方便下面的循环来使用 for(j=0;j<t;j++){ que[top++]=que[j]*p[i]*(-1); }//质因子的个数:奇加偶减,因此乘以-1来换号 } for(i=1,sum=0;i<top;i++)//sum来累加所有个数 sum+=m/que[i]; return sum; } int main(){ LL a,b,n; int t,i; scanf("%d",&t); for(i=1;i<=t;i++){ scanf("%lld%lld%lld",&a,&b,&n); //求1-m中多少个数字与n互质 getp(n);//求n的质因子 printf("Case #%d: %lld\n",i,b-nop(b)-(a-1-nop(a-1)));//总数减去 } return 0; }
#include<stdio.h> #include<math.h> int p[10],top; long long ansa,ansb,ans,a,b; void DFS(int n,bool tag,long long num){ if(n==top){ if(tag==1){ ansa-=a/num; ansb-=b/num; } else{ ansa+=a/num; ansb+=b/num; } return; } DFS(n+1,tag,num); DFS(n+1,!tag,num*p[n]); } int main(){ int i,j,n,T,k,cnt; cnt=1; scanf("%d",&T); while(T--){ scanf("%I64d%I64d%d",&a,&b,&n); a--; ansa=ansb=0; top=0; for(i=2;i*i<=n;i++){ if (n%i==0){ while(n%i==0) n=n/i; p[top++]=i; } } if(n>1) p[top++]=n; DFS(0,0,1); printf("Case #%d: %I64d\n",cnt++,ansb-ansa); } return 0; }
位运算
#include<cstdio> #define LL long long LL p[10],k;//p数组用来保存n的质因子,LL型n不会超过10个 void getp(LL n){ k=0; for(LL i=2;i*i<=n;i++){ if(n%i==0) p[k++]=i; while(n%i==0) n/=i; } if(n>1) p[k++]=n;//防止有比根号n大的质因子,k保存质因子个数 } LL nop(LL m){ LL i,j,sum=0,flag,num; for(i=1;i<1<<k;i++){ flag=0; num=1; for(j=0;j<k;j++) if(i&(1<<j)) flag++,num*=p[j]; if(flag&1) sum+=m/num; else sum-=m/num; } return sum; } int main(){ LL a,b,n; int t,i; scanf("%d",&t); for(i=1;i<=t;i++){ scanf("%lld%lld%lld",&a,&b,&n); //求1-m中多少个数字与n互质 getp(n);//求n的质因子 printf("Case #%d: %lld\n",i,b-nop(b)-(a-1-nop(a-1)));//总数减去 } return 0; }
神递归
#include<cstdio> #define LL long long LL p[10],k;//p数组用来保存n的质因子,LL型n不会超过10个 void getp(LL n){ k=0; for(LL i=2;i*i<=n;i++){ if(n%i==0) p[k++]=i; while(n%i==0) n/=i; } if(n>1) p[k++]=n;//防止有比根号n大的质因子,k保存质因子个数 } LL nop(LL m,LL t){ LL i,sum=0; for(i=t;i<k;i++) sum+=m/p[i]-nop(m/p[i],i+1); return sum; } int main(){ LL a,b,n; int t,i; scanf("%d",&t); for(i=1;i<=t;i++){ scanf("%lld%lld%lld",&a,&b,&n); //求1-m中多少个数字与n互质 getp(n);//求n的质因子 printf("Case #%d: %lld\n",i,b-nop(b,0)-(a-1-nop(a-1,0)));//总数减去 } return 0; }