Problem Description:
Given a positive integer N, you should output the most right digit of N^N.
Input:
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output:
For each test case, you should output the rightmost digit of N^N.
Sample Input:
2
3
4
Sample Output:
7
6
Hint
In the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7. In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.
程序代码:
#include<bits/stdc++.h> using namespace std; int quickmul(int n) { int ans=1; int temp=n%10; while(n) { if(n&1)//等价于n%2==1 ans=(ans*temp)%10; temp=(temp*temp)%10; n>>=1;//等价于n=n/2 } return ans; } int main() { int a,n,count; cin>>n; while(n--) { cin>>a; cout<<quickmul(a)<<endl; } return 0; }