[物理学与PDEs]第1章第2节 预备知识 2.2 Ampere-Biot-Savart 定律, 静磁场的散度与旋度

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 1. 电流密度, 电荷守恒定律 (1) 电荷的定向移动形成电流. (2) 电流密度 ${\bf j}$, 是描述导体内一点在某一时刻电流流动情况的物理量, 用单位时间内通过垂直于电流方向的单位面积的电荷量来衡量.

1. 电流密度, 电荷守恒定律

(1) 电荷的定向移动形成电流.

(2) 电流密度 ${\bf j}$, 是描述导体内一点在某一时刻电流流动情况的物理量, 用单位时间内通过垂直于电流方向的单位面积的电荷量来衡量.

(3) 电荷守恒定律: 设 $\vGa$ 为一封闭曲面, 则单位时间内 $\vGa$ 内电荷的增加量 $=$ 这段时间内经 $\vGa$ 流入的电荷总和, 用公式表示为 $$\bex \cfrac{\rd}{\rd t}\int_\Omega \rho\rd V =-\int_\vGa {\bf j}\cdot{\bf n}\rd S. \eex$$ 而可化为微分形式 $$\bex \rho_t+\Div {\bf j}=0. \eex$$ 称为电流的连续性方程.

 

2. Amp\'ere-Biot-Savart 定律, 磁感强度

(1) 磁场是一种空间, 于其中运动的电荷 (电流) 受到力的作用.

(2) 磁场是物质存在的一种形式, 它可以离开电流而独立存在, 比如变化的电场产生磁场.

(3) 在稳定的电流分布 ${\bf j}(x,y,z)$ 中, $P$ 处的电流元 ${\bf j}(P)\rd V_P$ 受到 $P'$ 处的电流元 ${\bf j}(P')\rd V_{P'}$ 的作用力为 $$\bex \cfrac{\mu_0}{4\pi} {\bf j}(P)\rd V_P\times \sex{\cfrac{{\bf j}(P')\rd V_{P'}\times {\bf r}_{P'P}}{r_{P'P}^3}}, \eex$$ 其中 $\mu_0=4\pi\times 10^{-7}V\cdot s/(A\cdot m)$ 为真空中的磁导率.

(4) 设电流分布的空间为 $\Omega$, 则 ${\bf j}(P)\rd V_P$ 所受的力为 $$\bex \rd {\bf F}(P)={\bf j}(P)\rd V_P\times \int_\Omega\cfrac{{\bf j}(P')\rd V_{P'}\times {\bf r}_{P'P}}{r_{P'P}^3}. \eex$$ 令 $$\bex {\bf B}(P)=\int_\Omega\cfrac{{\bf j}(P')\rd V_{P'}\times {\bf r}_{P'P}}{r_{P'P}^3} \eex$$ 为 $P$ 处的磁感强度, 则 $$\bex \rd {\bf F}(P)={\bf j}(P)\rd V_P\times {\bf B}(P). \eex$$ 这就是 Amp\'ere-Biot-Savart 定律.

 

3. Amp\'ere 定理的积分形式: 对静磁场中的任一闭曲线 $l$, $$\bex \oint_l{\bf B}\cdot \rd{\bf l} =\mu_0\int_S {\bf j}\cdot {\bf n}\rd S, \eex$$ 其中 $S$ 为任一以 $l$ 为边界的有向曲面, 其方向与 $l$ 成右手定则.

证明:

(1) 先对 ${\bf B}$ 化简: $$\beex \bea {\bf B}(P)&=\cfrac{\mu_0}{4\pi} \int_\Omega\cfrac{{\bf j}(P')\rd V_{P'}\times {\bf r}_{P'P}}{r_{P'P}^3}\\ &=\cfrac{\mu_0}{4\pi}\int_\Omega \n\cfrac{1}{r_{P'P}} \times {\bf j}(P')\rd V_{P'}\\ &=\cfrac{\mu_0}{4\pi}\int_\Omega \sez{ \rot\sex{\cfrac{{\bf j}(P')}{r_{P'P}}\rd V_{P'}} -\cfrac{1}{r_{P'P}}\rot {\bf j}(P') \rd V_{P'}}\\ &\quad\sex{\rot(\phi{\bf A})=\n\phi\times {\bf A}+\phi\rot {\bf A}}\\ &=\rot {\bf A}(P)\quad\sex{{\bf A}(P)=\cfrac{\mu_0}{4\pi} \int_\Omega \cfrac{{\bf j}(P')}{r_{P'P}}\rd V_{P'}}, \eea \eeex$$ 其中最后一步我们利用了稳定磁场是 (有源) 无旋场.

(2) 如此, $$\bex \Div {\bf B}(P)\ra \int_S {\bf B}\cdot\n \rd S=0\quad\sex{\forall\ \mbox{封闭曲面 }S}. \eex$$ 静磁场是无源场.

(3) $$\beex \bea \int_l{\bf B}\cdot\rd {\bf l} &=\int_S \rot{\bf B}\cdot{\bf n}\rd S\\ &=\int_S\rot\rot {\bf A}\cdot{\bf n}\rd S\\ &=\int_S (-\lap {\bf A}+\n\Div{\bf A})\rd S\\ &\equiv I_1+I_2. \eea \eeex$$

(4) 对 $I_1$, 注意到 $-\cfrac{1}{4\pi}\int_\Omega \cfrac{{\bf j}(P')}{r_{P'P}}\rd V_{P'}$ 为 $-\lap{\bf u}={\bf j}$ 的解, 而 $$\bex I_1=\int_S \mu_0{\bf j}\cdot{\bf n}\rd S. \eex$$

(5) 对 $I_2$, 注意到 $$\beex \bea \Div {\bf A}(P)&=\cfrac{\mu_0}{4\pi}\int_\Omega \Div \cfrac{{\bf j}(P')}{r_{P'P}}\rd V_{P'}\\ &=\cfrac{\mu_0}{4\pi} \int_\Omega \n\cfrac{1}{r_{P'P}}\cdot{\bf j}(P')\rd V_{P'}\\ &\quad\sex{\Div(f{\bf X})=\n f \cdot {\bf X}+f\Div {\bf X},\ \Div{\bf j}=0\la (2. 21)}\\ &=-\cfrac{\mu_0}{4\pi}\int_\Omega \n'\cfrac{1}{r_{P'P}}\cdot {\bf j}(P')\rd V_{P'}\\ &=-\cfrac{\mu_0}{4\pi}\sez{ \int_{\p \Omega}\cfrac{1}{r_{P'P}}{\bf j}(P')\cdot{\bf n}\rd S -\int_\Omega \cfrac{1}{r_{P'P}}\Div'{\bf j}(P')\rd V_{P'} }\\ &=0, \eea \eeex$$ 我们有 $I_2=0$.

(6) 于是 $$\bex \oint_l{\bf B}\cdot{\bf n}\rd {\bf l} =\mu_0\int_S{\bf j}\cdot{\bf n}\rd S. \eex$$

 

4. Amp\'ere 定理的微分形式: $$\bex \rot{\bf B}=\mu_0{\bf j}. \eex$$ 由此, 静磁场是有旋场.

 

5. 总结: 稳定电流的磁场 (静磁场) 是无源有旋场. 

 

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
目录
相关文章
|
数据采集
PCA与主成分回归(PCR)有何区别?
PCA是降维工具,转化相关变量为线性无关的主成分,保留数据变异。PCR是回归分析方法,利用PCA的主成分预测因变量,应对自变量间的多重共线性,提升模型稳定性。两者协同工作,优化高维数据的建模。
663 0
|
项目管理
项目管理办公室(Project Management Office)
当今的商业环境变得越来越复杂,项目管理成为了成功实施战略和取得竞争优势的关键。为了更好地管理和协调项目,许多组织都建立了项目管理办公室(PMO)。本文将详细探讨PMO的概念、功能以及它们在项目管理中的重要性。
|
API 数据安全/隐私保护
Argo CD接入LDAP认证或者gitea认证的方法
argocd默认是通过修改argocd-cm来添加账户的,添加完账户后,还需要使用argocd客户端命令去给账户设置密码,这肯定是比较麻烦的,为了方便使用,我们可以接入ldap认证或者gitea的oauth2认证。 这里我们主要写ldap认证,因为gitea没有提供组信息给dex,而ldap能返回组信息 ,gitea的接入会在文章的末尾进行简单介绍 关键词:argocd ldap dex
2235 1
Argo CD接入LDAP认证或者gitea认证的方法
|
7月前
|
人工智能 算法 大数据
数据的“潘多拉魔盒”:大数据伦理的深度思考
数据的“潘多拉魔盒”:大数据伦理的深度思考
392 25
|
人工智能 开发框架 Java
重磅发布!AI 驱动的 Java 开发框架:Spring AI Alibaba
随着生成式 AI 的快速发展,基于 AI 开发框架构建 AI 应用的诉求迅速增长,涌现出了包括 LangChain、LlamaIndex 等开发框架,但大部分框架只提供了 Python 语言的实现。但这些开发框架对于国内习惯了 Spring 开发范式的 Java 开发者而言,并非十分友好和丝滑。因此,我们基于 Spring AI 发布并快速演进 Spring AI Alibaba,通过提供一种方便的 API 抽象,帮助 Java 开发者简化 AI 应用的开发。同时,提供了完整的开源配套,包括可观测、网关、消息队列、配置中心等。
7075 116
|
计算机视觉
限制对比度自适应直方图均衡化
【6月更文挑战第12天】限制对比度自适应直方图均衡化。
194 1
|
11月前
|
缓存 安全 程序员
易语言在跨平台开发中有哪些常见的技术挑战和解决方案?
易语言在跨平台开发中有哪些常见的技术挑战和解决方案?
189 2
|
并行计算 索引 Python
讨论如何优化 DataFrame 操作,减少内存占用和提高执行速度
【5月更文挑战第19天】优化 DataFrame 操作涉及选择合适的数据类型、避免复制、使用向量化、高效迭代和设置索引。通过这些策略,如使用 `np.int8` 节省内存,直接修改列数据,利用 `itertuples`,设置分类数据类型,以及分块和并行计算,可以显著减少内存占用和提高执行速度,从而更好地处理大规模数据。实践中需结合具体情况综合运用,不断测试和优化。
484 2
|
机器学习/深度学习 计算机视觉
【YOLOv8改进】 YOLOv8 更换骨干网络之GhostNetV2 长距离注意力机制增强廉价操作,构建更强端侧轻量型骨干 (论文笔记+引入代码)
该专栏聚焦YOLO目标检测的创新改进与实战,介绍了轻量级CNNs和注意力机制在移动设备上的应用。文章提出了一种名为GhostNetV2的新架构,结合了硬件友好的DFC注意力机制,强化了特征表达能力和全局信息捕获,同时保持低计算成本和高效推理。GhostNetV2在ImageNet上以167M FLOPs达到75.3%的top-1准确率,优于同类模型。创新点包括DFC注意力、模型结构优化和效率提升。源代码可在GitHub和MindSpore平台上找到。此外,还提到了YOLOv8的相关实现和任务配置。
|
前端开发 API
【strapi系列】strapi在postman中如何调试public和认证用户Authorization的接口
【strapi系列】strapi在postman中如何调试public和认证用户Authorization的接口
209 1