[再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]特征多项式的互素分解)

简介: (2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]特征多项式的互素分解) 设 $f(x)$ 为 ${\bf A}$ 的特征多项式, 且存在互素的次数分别为 $p,q$ 的多项式 $g(x),h(x)$ 使得 $f(x)=g(x)h(x)$.

(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]特征多项式的互素分解) 设 $f(x)$ 为 ${\bf A}$ 的特征多项式, 且存在互素的次数分别为 $p,q$ 的多项式 $g(x),h(x)$ 使得 $f(x)=g(x)h(x)$. 求证: $$\bex \rank g({\bf A})=q,\quad \rank h({\bf A})=p. \eex$$

证明: 设 $$\bex g(x)=\prod_{i=1}^s (\lm-\lm_i)^{m_i},\quad h(x)=b\prod_{j=1}^t (\lm-\mu_j)^{n_j}, \eex$$ 则 $$\bex \sum_{i=1}^s m_i=p,\quad \sum_{j=1}^tn_j=q. \eex$$ 由 $(g,h)=1$ 知 $\lm_i\neq \mu_j$. 又 $$\bex f(x)=g(x)h(x)=ab\cdot \prod_{i=1}^s (\lm-\lm_i)^{m_i}\cdot\prod_{j=1}^t (\lm-\mu_j)^{n_j} \eex$$ 为 ${\bf A}$ 的特征多项式, 而有直和分解 $$\bex V=\oplus_{i=1}^s V_i\oplus \oplus_{j=1}^t W_j, \eex$$ 其中 $$\bex V_i=\sed{{\bf x}\in V;({\bf A}-\lm_i{\bf E})^{m_i}{\bf x}={\bf 0}},\quad W_j =\sed{{\bf x}\in V;({\bf A}-\mu_j{\bf E})^{n_j}{\bf x}={\bf 0}}, \eex$$ 且 $\dim V_i=m_i$, $\dim W_j=n_j$ (可用 Jordan 标准型直接证明, 自己思考下). 为证题目, 仅须证明 $$\bex \oplus_{i=1}^s V_i=\sed{h({\bf A}){\bf x}={\bf 0};{\bf x}\in V},\quad \oplus_{j=1}^t W_j=\sed{g({\bf A}){\bf x}={\bf 0};{\bf x}\in V}, \eex$$ 即知 $$\bex \rank h({\bf A})=\sum_{i=1}^s m_i=p,\quad \rank g({\bf A})=\sum_{j=1}^t n_j=q. \eex$$ 不失一般性, 仅需证明 $$\bex \oplus_{i=1}^s V_i=\sed{h({\bf A}){\bf x};{\bf x}\in V}\equiv U \eex$$ 如下: $$\beex \bea {\bf x}\in V_i&\ra ({\bf A}-\lm_i{\bf E})^{m_i}{\bf x}={\bf 0}\\ &\ra g({\bf A}){\bf x}={\bf 0}\\ &\ra {\bf x}=u({\bf A})g({\bf A}){\bf x}+v({\bf A})h({\bf A}){\bf x}=v({\bf A})h({\bf A}){\bf x} =h({\bf A})v({\bf A}){\bf x}\in U\\ &\quad\sex{\exists\ u,v,\st uf+vg=1};\\ {\bf x}\in U&\ra {\bf x}=h({\bf A}){\bf y}\\ &\ra {\bf x}=h({\bf A})({\bf v}_1+\cdots+{\bf v}_s+{\bf w}_1+\cdots+{\bf w}_s)\\ &\quad\quad\,=h({\bf A}){\bf v}_1+\cdots+h({\bf A}){\bf v}_s\in \oplus_{i=1}^s V_i\quad\sex{{\bf v}_i\in V_i\ra h({\bf A}){\bf v}_i\in V_i}. \eea \eeex$$ 

 

目录
相关文章
日期累加(北京理工大学考研机试题)
日期累加(北京理工大学考研机试题)
87 0
日期累加(北京理工大学考研机试题)
成绩排序2 (清华大学考研机试题)
成绩排序2 (清华大学考研机试题)
85 0
成绩排序2 (清华大学考研机试题)
成绩排序 (清华大学考研机试题)
成绩排序 (清华大学考研机试题)
102 0
成绩排序 (清华大学考研机试题)
|
人工智能 算法 大数据
峰哥读者从创业失败延毕一年,到考研985拿大厂offer,分享考研经历与经验
峰哥读者从创业失败延毕一年,到考研985拿大厂offer,分享考研经历与经验
峰哥读者从创业失败延毕一年,到考研985拿大厂offer,分享考研经历与经验
|
Perl
南开大学2012年数学分析考研试题参考解答
1 ($15'$) 求极限 $\dps{\lim_{x\to \infty} x^m \int_0^\frac{1}{x} \sin t^2\rd t,}$ 其中 $m$ 为任意整数. 解答: 当 $m=0,-1,-2,\cdots$ 时, 原极限 $\dps{=\lim_{s\to 0}s^{-m}\int_0^s \sin t^2\rd t=0.
1001 0
|
机器学习/深度学习 测试技术
【Programming Clip】06、07年清华计算机考研上机试题解答(个别测试用例无法通过)
作者:gnuhpc  出处:http://www.cnblogs.com/gnuhpc/ 1.清华计算机系研究生考试上机07年试题解答(自己今天上午做的,有一个不能完成所有测试用例~)   清华大学计算机科学与技术系 2007 年硕士研究生招生复试 2007 年 3 月 24 日 注意事项: 1. 试题共三题,总计 100 分,考试时间为一个半小时。
719 0
|
存储 固态存储 程序员
考研计算机组成原理总结(5)
考研计算机组成原理总结(5)
771 0
|
存储 算法 调度
【考研必备】解开“黑匣子”的神秘面纱,透视数字世界底层实现过程(计算机组成原理)(下)
【考研必备】解开“黑匣子”的神秘面纱,透视数字世界底层实现过程(计算机组成原理)

热门文章

最新文章