[物理学与PDEs]第5章习题6 各向同性材料时强椭圆性条件的等价条件

简介: 在线性弹性时, 证明各向同性材料, 强椭圆性条件 (5. 6) 等价于 Lam\'e 常数满足 $$\bex \mu>0,\quad \lm+2\mu>0.  \eex$$   证明:   (1)  对各向同性材料, $$\beex \bea a_{ijkl}&=\lm\delta_{ij}...

在线性弹性时, 证明各向同性材料, 强椭圆性条件 (5. 6) 等价于 Lam\'e 常数满足 $$\bex \mu>0,\quad \lm+2\mu>0.  \eex$$

 

证明:

 

(1)  对各向同性材料, $$\beex \bea a_{ijkl}&=\lm\delta_{ij}\delta_{kl} +\mu\sex{\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}},\\ \sum_{i,j,k,l}a_{ijkl}\xi_i\xi_k\eta_j\eta_l &=\lm\sum_i\xi_i\eta_i\cdot \sum_k\xi_k\eta_k +\mu\sum_i\xi_i^2\cdot\sum_j\eta_j^2 +\mu\sum_i\eta_i\eta_i\cdot \sum_k\xi_k\eta_k\\ &=(\lm+\mu)({\bf \xi}\cdot{\bf\eta})^2+ \mu|{\bf \xi}|^2\cdot |{\bf\eta}|^2.  \eea \eeex$$

 

(2)  $\la$: 若 $\lm+\mu\geq 0$, 则 $$\bex \sum_{i,j,k,l}a_{ijkl}\xi_i\xi_k\eta_j\eta_l\geq\mu|{\bf \xi}|^2\cdot |{\bf\eta}|^2; \eex$$ 若 $\lm+\mu<0$, 则 $$\beex \bea \sum_{i,j,k,l}a_{ijkl}\xi_i\xi_k\eta_j\eta_l &\geq (\lm+\mu)\sex{|{\bf \xi}|\cdot|{\bf\eta}|}^2 +\mu|{\bf \xi}|^2\cdot |{\bf\eta}|^2\\ &=(\lm+2\mu) |{\bf \xi}|^2\cdot |{\bf\eta}|^2.  \eea \eeex$$

 

(3)  $\ra$: 取 $$\bex {\bf \xi}=(1,0,0)^T,\quad{\bf\eta}=(0,1,0)^T, \eex$$ 则 $$\bex \sum_{i,j,k,l}a_{ijkl}\xi_i\xi_k\eta_j\eta_l=\mu>0.  \eex$$ 取 $$\bex {\bf \xi}={\bf\eta}=(1,0,0)^T, \eex$$ 则 $$\bex \sum_{i,j,k,l}a_{ijkl}\xi_i\xi_k\eta_j\eta_l =\lm+2\mu>0.  \eex$$

目录
相关文章
|
6月前
数学基础从高一开始7、等式性质与不等式性质(重点作差法)
数学基础从高一开始7、等式性质与不等式性质(重点作差法)
38 0
|
6月前
大学物理(上)-期末知识点结合习题复习(5)——刚体力学-转动惯量、力矩、线密度 面密度 体密度、平行轴定理和垂直轴定理、角动量定理和角动量守恒定律
大学物理(上)-期末知识点结合习题复习(5)——刚体力学-转动惯量、力矩、线密度 面密度 体密度、平行轴定理和垂直轴定理、角动量定理和角动量守恒定律
39 0
|
机器学习/深度学习
数理逻辑—命题公式及其赋值与分类
数理逻辑—命题公式及其赋值与分类
【矩阵分析】矩阵幂级数 发散 条件 || 幂级数 与 解析函数 的关系 || 幂级数 收敛半径r 的求法
【矩阵分析】矩阵幂级数 发散 条件 || 幂级数 与 解析函数 的关系 || 幂级数 收敛半径r 的求法
【矩阵分析】矩阵幂级数 发散 条件 || 幂级数 与 解析函数 的关系 || 幂级数 收敛半径r 的求法
【数理逻辑】谓词逻辑 ( 一阶谓词逻辑公式 | 示例 )
【数理逻辑】谓词逻辑 ( 一阶谓词逻辑公式 | 示例 )
305 0
【数理逻辑】谓词逻辑 ( 判断一阶谓词逻辑公式真假 | 解释 | 示例 | 谓词逻辑公式类型 | 永真式 | 永假式 | 可满足式 | 等值式 )
【数理逻辑】谓词逻辑 ( 判断一阶谓词逻辑公式真假 | 解释 | 示例 | 谓词逻辑公式类型 | 永真式 | 永假式 | 可满足式 | 等值式 )
466 0
【数理逻辑】谓词逻辑的等值演算与推理演算 ( 个体词 | 谓词 | 量词 | 谓词逻辑公式 | 两个基本公式 | 命题符号化技巧 | 命题符号化示例 ) ★★(二)
【数理逻辑】谓词逻辑的等值演算与推理演算 ( 个体词 | 谓词 | 量词 | 谓词逻辑公式 | 两个基本公式 | 命题符号化技巧 | 命题符号化示例 ) ★★(二)
211 0
|
自然语言处理
【数理逻辑】谓词逻辑的等值演算与推理演算 ( 个体词 | 谓词 | 量词 | 谓词逻辑公式 | 两个基本公式 | 命题符号化技巧 | 命题符号化示例 ) ★★(一)
【数理逻辑】谓词逻辑的等值演算与推理演算 ( 个体词 | 谓词 | 量词 | 谓词逻辑公式 | 两个基本公式 | 命题符号化技巧 | 命题符号化示例 ) ★★(一)
278 0
[再寄小读者之数学篇](2014-07-16 两个条件给出二阶导中值)
设 $f(x)$ 在 $[a,b]$ 上可微, $f(a)=f(b)=0$, 则对 $\forall\ x\in [a,b]$, 存在 $\xi\in (a,b)$, 使得 $$\bex f(x)=\frac{f''(\xi)}{2}(x-a)(x-b).
532 0
|
机器学习/深度学习
[再寄小读者之数学篇](2014-06-20 渐近等式中的待定常数)
计算以下渐近等式 $$\bex \int_0^1 \cfrac{x^{n-1}}{1+x}\rd x=\cfrac{a}{n}+\cfrac{b}{n^2}+o\sex{\cfrac{1}{n^2}}\quad(n\to\infty) \eex$$ 中的待定常数 $a,b$.
716 0