基于概率论的MATLAB仿真,内容包括非共轭条件下的后验概率的推导,共轭条件下的非完备集的后验概率的推导

简介: 基于概率论的MATLAB仿真,内容包括非共轭条件下的后验概率的推导,共轭条件下的非完备集的后验概率的推导

1.算法描述
1.1先验概率的推导

    根据贝叶斯概率论可知,某一事件的后验概率可以根据先验概率来获得,因此,这里首先对事件的先验概率分布进行理论的推导。假设测量的腐蚀数据服从gamma分布,其概率密度函数可以通过如下表达式表示:

image.png

   根据参考文献1和参考文献2的理论推导可知,采用反gamma分布,可以作为腐蚀数据的先验分布,即:

image.png

   公式3为公式2的自然指数形式,公式3中,x表示腐蚀数据,参数a和b分别表示反gamma分布的参数估计值。 

image.png
image.png

从公式7可知,此时后验概率值则取决于最后一次测量结果.根据上述推导过程,完备集的后验概率可以通过如下公式计算得到:

image.png

   但是完备集下的后验概率所满足的公式3条件和公式4条件,在实际中往往不太可能发生,因此需要考虑非完备集下的后验概率计算方法。  

1.2.共轭条件下的非完备集的后验概率的推导

    完备集下的后验概率不太适用于实际情况,因此,对于实际情况,需要考虑非完备集下的后验概率的计算。非完备集下的后验概率是关于随机事件的条件概率,是在相关证据给定并纳入考虑之后的条件概率。后验概率和先验概率满足如下关系式:

image.png

  从公式可知,后验概率等同于先验函数和似然函数的乘积,这里先验函数根据本文公式2获得,下面主要对似然函数进行公式推导,根据参考文献5的相关推导过程可知,后验概率的基本计算公式如下:  

image.png

根据本文上述章节的介绍,参数A和B满足如下关系式:

image.png

因此,似然函数可以通过如下表达式表示:

image.png
image.png

2.仿真效果预览
matlab2022a仿真结果如下:

image.png
image.png

3.MATLAB核心程序

K_l        = length(Lt(:,:,kk1)); %total number of l
 
for i = 1:K_d
    if Nn2(i) == 1
       dt1(i,:,kk1) = dt1(i,:,kk1); 
    else
       dt1(i,:,kk1) = 5.39 + 0.19*dt1(i,:,kk1) - 0.02*Lt(i,:,kk1) + 0.35*Nn2(i);
    end
end
%m->mm
dt1        = 1000*dt1;
%to obtaion a average number of do_rate and Lo_rate
do_rate    = sum(dt1(:,:,kk1))/K_d;  
Lo_rate    = sum(Lt(:,:,kk1))/K_l; 
% Q = sqrt(1+0.31*power(Lo_rate/sqrt(D/t),2)); 
% Q--length of correction factor
Q1         =(Lo_rate/sqrt(D_t))^2;
Q          = sqrt(1+0.31*Q1);
% pf_rate=(2*t*sigma_u*(1-do_rate/t))/(D-t)/(1-(do_rate/t)/Q);
% pf -- failure pressure
pf_rate_1  = 2*t*sigma_u*(1-do_rate/t);
pf_rate_2  =(D-t)*(1-do_rate/t/Q);
pf_rate    = pf_rate_1/pf_rate_2;
grid_dist  = 0.1/20; % in order to get the obvious result on the plot
x          = grid_dist:grid_dist:pf_rate*0.015;
%fit the contineous inverted gamma density to the data
par        = invgamafit(0.1); % change pf_rate from mPa to kPa, in order to get the obvious result on the plot
a          = par(1);
b          = 1/par(2);
%Examining inverted gamma distributed prior
prior     = exp(a*log(b)-gammaln(a)+(-a-1)*log(x)-b./x);
load r2.mat
prior     = post_imp_prior';
%Examination of inverted gamma post prior after perfect inspection
A         = a + dt1(K_d)/pf_rate^2;
B         = b +  Lt(K_l)/pf_rate^2;
postprior = exp(A*log(B)-gammaln(A)-(A+1)*log(x)-B./x);
%***********************************************************************************
% % %***********************************************************************************
% %定义likelyhood
% likeliprod = likelihoods(x,t,dt(:,:,kk1),Lt(:,:,kk1),Nn2);
%***********************************************************************************
%这个部分和之前的不一样了,修改后的如下所示:
%***********************************************************************************
%对prior参数进行随机化构造
m = 10;
for ijk = 1:m
    ijk
    %***********************************************************************************
    %***********************************************************************************
    %Calaulate the depth change rate and length change rate with time 
    for kk1 =1:(kk -1);
        drate1 = normrnd(drate,drateS, nsamples,1, kk1); % Measured defect depth @ time T 
        Lrate1 = normrnd(Lrate,LrateS, nsamples,1, kk1); % Measured defect length @ time T    
        if kk1 == 1
           dt(:,:,kk1) = do1(:,:,kk1) + drate1(:,:,kk1)*(delT) ; 
           dt1(:,:,kk1) = dt(:,:,kk1);
           Lt(:,:,kk1) = Lo1(:,:,kk1) + Lrate1(:,:,kk1)*(delT) ;    
        else 
           dt(:,:,kk1) = dt(:,:,kk1-1)   + drate1(:,:,kk1)*(delT);
           dt1(:,:,kk1) = dt(:,:,kk1) ;
           Lt(:,:,kk1) = Lt(:,:,kk1-1) + Lrate1(:,:,kk1)*(delT); 
        end  
    end
    K_d        = length(dt(:,:,kk1)); %total number of d
    K_l        = length(Lt(:,:,kk1)); %total number of l
    for i = 1:K_d
        if Nn2(i) == 1
           dt1(i,:,kk1) = dt1(i,:,kk1); 
        else
           dt1(i,:,kk1) = 5.39 + 0.19*dt1(i,:,kk1) - 0.02*Lt(i,:,kk1) + 0.35*Nn2(i);
        end
    end
    %m->mm
    dt1        = 1000*dt1;
    %to obtaion a average number of do_rate and Lo_rate
    do_rate    = sum(dt1(:,:,kk1))/K_d;  
    Lo_rate    = sum(Lt(:,:,kk1))/K_l; 
    % Q = sqrt(1+0.31*power(Lo_rate/sqrt(D/t),2)); 
    % Q--length of correction factor
    Q1         =(Lo_rate/sqrt(D_t))^2;
    Q          = sqrt(1+0.31*Q1);
    % pf_rate=(2*t*sigma_u*(1-do_rate/t))/(D-t)/(1-(do_rate/t)/Q);
    % pf -- failure pressure
    pf_rate_1  = 2*t*sigma_u*(1-do_rate/t);
    pf_rate_2  =(D-t)*(1-do_rate/t/Q);
    pf_rate    = pf_rate_1/pf_rate_2;
    grid_dist  = 0.1/20; % in order to get the obvious result on the plot
    x          = grid_dist:grid_dist:pf_rate*0.015;
    %fit the contineous inverted gamma density to the data
    par        = invgamafit(0.1); % change pf_rate from mPa to kPa, in order to get the obvious result on the plot
    as(1,ijk)  = par(1);
    bs(1,ijk)  = 1/par(2);
    %***********************************************************************************
    %***********************************************************************************
end
相关文章
|
18天前
|
算法 Serverless
基于魏格纳函数和焦散线方法的自加速光束matlab模拟与仿真
本项目基于魏格纳函数和焦散线方法,使用MATLAB 2022A模拟自加速光束。通过魏格纳函数法生成多种自加速光束,并设计相应方法,展示仿真结果。核心程序包括相位和幅度的计算、光场分布及拟合分析,实现对光束传播特性的精确控制。应用领域涵盖光学成像、光操控和光束聚焦等。 关键步骤: 1. 利用魏格纳函数计算光场分布。 2. 模拟并展示自加速光束的相位和幅度图像。 3. 通过拟合分析,验证光束加速特性。 该算法原理基于魏格纳函数描述光场分布,结合数值模拟技术,实现对光束形状和传播特性的精确控制。通过调整光束相位分布,可改变其传播特性,如聚焦或加速。
|
11天前
|
算法 数据安全/隐私保护
基于DVB-T的COFDM+16QAM+LDPC图传通信系统matlab仿真,包括载波同步,定时同步,信道估计
### 简介 本项目基于DVB-T标准,实现COFDM+16QAM+LDPC码通信链路的MATLAB仿真。通过COFDM技术将数据分成多个子载波并行传输,结合16QAM调制和LDPC编码提高传输效率和可靠性。系统包括载波同步、定时同步和信道估计模块,确保信号的准确接收与解调。MATLAB 2022a仿真结果显示了良好的性能,完整代码无水印。仿真操作步骤配有视频教程,便于用户理解和使用。 核心程序涵盖导频插入、载波频率同步、信道估计及LDPC解码等关键环节。仿真结果展示了系统的误码率性能,并保存为R1.mat文件。
119 76
|
8天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
8天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
104 68
|
10天前
|
算法 JavaScript
基于遗传优化的Sugeno型模糊控制器设计matlab仿真
本课题基于遗传优化的Sugeno型模糊控制器设计,利用MATLAB2022a进行仿真。通过遗传算法优化模糊控制器的隶属函数参数,提升控制效果。系统原理结合了模糊逻辑与进化计算,旨在增强系统的稳定性、响应速度和鲁棒性。核心程序实现了遗传算法的选择、交叉、变异等步骤,优化Sugeno型模糊系统的参数,适用于工业控制领域。
|
10天前
|
算法 决策智能
基于遗传优化的货柜货物摆放优化问题求解matlab仿真
本项目采用MATLAB2022A实现基于遗传算法的货柜货物摆放优化,初始随机放置货物后通过适应度选择、交叉、变异及逆转操作迭代求解,最终输出优化后的货物分布图与目标函数变化曲线,展示进化过程中的最优解和平均解的变化趋势。该方法模仿生物进化,适用于复杂空间利用问题,有效提高货柜装载效率。
|
9天前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
42 18
|
15天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
17天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
16天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。

热门文章

最新文章