基于概率论的MATLAB仿真,内容包括非共轭条件下的后验概率的推导,共轭条件下的非完备集的后验概率的推导

简介: 基于概率论的MATLAB仿真,内容包括非共轭条件下的后验概率的推导,共轭条件下的非完备集的后验概率的推导

1.算法描述
1.1先验概率的推导

    根据贝叶斯概率论可知,某一事件的后验概率可以根据先验概率来获得,因此,这里首先对事件的先验概率分布进行理论的推导。假设测量的腐蚀数据服从gamma分布,其概率密度函数可以通过如下表达式表示:

image.png

   根据参考文献1和参考文献2的理论推导可知,采用反gamma分布,可以作为腐蚀数据的先验分布,即:

image.png

   公式3为公式2的自然指数形式,公式3中,x表示腐蚀数据,参数a和b分别表示反gamma分布的参数估计值。 

image.png
image.png

从公式7可知,此时后验概率值则取决于最后一次测量结果.根据上述推导过程,完备集的后验概率可以通过如下公式计算得到:

image.png

   但是完备集下的后验概率所满足的公式3条件和公式4条件,在实际中往往不太可能发生,因此需要考虑非完备集下的后验概率计算方法。  

1.2.共轭条件下的非完备集的后验概率的推导

    完备集下的后验概率不太适用于实际情况,因此,对于实际情况,需要考虑非完备集下的后验概率的计算。非完备集下的后验概率是关于随机事件的条件概率,是在相关证据给定并纳入考虑之后的条件概率。后验概率和先验概率满足如下关系式:

image.png

  从公式可知,后验概率等同于先验函数和似然函数的乘积,这里先验函数根据本文公式2获得,下面主要对似然函数进行公式推导,根据参考文献5的相关推导过程可知,后验概率的基本计算公式如下:  

image.png

根据本文上述章节的介绍,参数A和B满足如下关系式:

image.png

因此,似然函数可以通过如下表达式表示:

image.png
image.png

2.仿真效果预览
matlab2022a仿真结果如下:

image.png
image.png

3.MATLAB核心程序

K_l        = length(Lt(:,:,kk1)); %total number of l
 
for i = 1:K_d
    if Nn2(i) == 1
       dt1(i,:,kk1) = dt1(i,:,kk1); 
    else
       dt1(i,:,kk1) = 5.39 + 0.19*dt1(i,:,kk1) - 0.02*Lt(i,:,kk1) + 0.35*Nn2(i);
    end
end
%m->mm
dt1        = 1000*dt1;
%to obtaion a average number of do_rate and Lo_rate
do_rate    = sum(dt1(:,:,kk1))/K_d;  
Lo_rate    = sum(Lt(:,:,kk1))/K_l; 
% Q = sqrt(1+0.31*power(Lo_rate/sqrt(D/t),2)); 
% Q--length of correction factor
Q1         =(Lo_rate/sqrt(D_t))^2;
Q          = sqrt(1+0.31*Q1);
% pf_rate=(2*t*sigma_u*(1-do_rate/t))/(D-t)/(1-(do_rate/t)/Q);
% pf -- failure pressure
pf_rate_1  = 2*t*sigma_u*(1-do_rate/t);
pf_rate_2  =(D-t)*(1-do_rate/t/Q);
pf_rate    = pf_rate_1/pf_rate_2;
grid_dist  = 0.1/20; % in order to get the obvious result on the plot
x          = grid_dist:grid_dist:pf_rate*0.015;
%fit the contineous inverted gamma density to the data
par        = invgamafit(0.1); % change pf_rate from mPa to kPa, in order to get the obvious result on the plot
a          = par(1);
b          = 1/par(2);
%Examining inverted gamma distributed prior
prior     = exp(a*log(b)-gammaln(a)+(-a-1)*log(x)-b./x);
load r2.mat
prior     = post_imp_prior';
%Examination of inverted gamma post prior after perfect inspection
A         = a + dt1(K_d)/pf_rate^2;
B         = b +  Lt(K_l)/pf_rate^2;
postprior = exp(A*log(B)-gammaln(A)-(A+1)*log(x)-B./x);
%***********************************************************************************
% % %***********************************************************************************
% %定义likelyhood
% likeliprod = likelihoods(x,t,dt(:,:,kk1),Lt(:,:,kk1),Nn2);
%***********************************************************************************
%这个部分和之前的不一样了,修改后的如下所示:
%***********************************************************************************
%对prior参数进行随机化构造
m = 10;
for ijk = 1:m
    ijk
    %***********************************************************************************
    %***********************************************************************************
    %Calaulate the depth change rate and length change rate with time 
    for kk1 =1:(kk -1);
        drate1 = normrnd(drate,drateS, nsamples,1, kk1); % Measured defect depth @ time T 
        Lrate1 = normrnd(Lrate,LrateS, nsamples,1, kk1); % Measured defect length @ time T    
        if kk1 == 1
           dt(:,:,kk1) = do1(:,:,kk1) + drate1(:,:,kk1)*(delT) ; 
           dt1(:,:,kk1) = dt(:,:,kk1);
           Lt(:,:,kk1) = Lo1(:,:,kk1) + Lrate1(:,:,kk1)*(delT) ;    
        else 
           dt(:,:,kk1) = dt(:,:,kk1-1)   + drate1(:,:,kk1)*(delT);
           dt1(:,:,kk1) = dt(:,:,kk1) ;
           Lt(:,:,kk1) = Lt(:,:,kk1-1) + Lrate1(:,:,kk1)*(delT); 
        end  
    end
    K_d        = length(dt(:,:,kk1)); %total number of d
    K_l        = length(Lt(:,:,kk1)); %total number of l
    for i = 1:K_d
        if Nn2(i) == 1
           dt1(i,:,kk1) = dt1(i,:,kk1); 
        else
           dt1(i,:,kk1) = 5.39 + 0.19*dt1(i,:,kk1) - 0.02*Lt(i,:,kk1) + 0.35*Nn2(i);
        end
    end
    %m->mm
    dt1        = 1000*dt1;
    %to obtaion a average number of do_rate and Lo_rate
    do_rate    = sum(dt1(:,:,kk1))/K_d;  
    Lo_rate    = sum(Lt(:,:,kk1))/K_l; 
    % Q = sqrt(1+0.31*power(Lo_rate/sqrt(D/t),2)); 
    % Q--length of correction factor
    Q1         =(Lo_rate/sqrt(D_t))^2;
    Q          = sqrt(1+0.31*Q1);
    % pf_rate=(2*t*sigma_u*(1-do_rate/t))/(D-t)/(1-(do_rate/t)/Q);
    % pf -- failure pressure
    pf_rate_1  = 2*t*sigma_u*(1-do_rate/t);
    pf_rate_2  =(D-t)*(1-do_rate/t/Q);
    pf_rate    = pf_rate_1/pf_rate_2;
    grid_dist  = 0.1/20; % in order to get the obvious result on the plot
    x          = grid_dist:grid_dist:pf_rate*0.015;
    %fit the contineous inverted gamma density to the data
    par        = invgamafit(0.1); % change pf_rate from mPa to kPa, in order to get the obvious result on the plot
    as(1,ijk)  = par(1);
    bs(1,ijk)  = 1/par(2);
    %***********************************************************************************
    %***********************************************************************************
end
相关文章
|
23天前
|
传感器 算法 vr&ar
六自由度Stewart控制系统matlab仿真,带GUI界面
六自由度Stewart平台控制系统是一种高精度、高稳定性的运动模拟装置,广泛应用于飞行模拟、汽车驾驶模拟、虚拟现实等领域。该系统通过六个独立的线性致动器连接固定基座与移动平台,实现对负载在三维空间内的六个自由度(三维平移X、Y、Z和三维旋转-roll、pitch、yaw)的精确控制。系统使用MATLAB2022a进行仿真和控制算法开发,核心程序包括滑块回调函数和创建函数,用于实时调整平台的位置和姿态。
|
17天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
18天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
16天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
19天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
17天前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
18天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
18天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
36 3
|
23天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
22天前
|
机器学习/深度学习 存储 算法
基于Actor-Critic(A2C)强化学习的四旋翼无人机飞行控制系统matlab仿真
基于Actor-Critic强化学习的四旋翼无人机飞行控制系统,通过构建策略网络和价值网络学习最优控制策略。MATLAB 2022a仿真结果显示,该方法在复杂环境中表现出色。核心代码包括加载训练好的模型、设置仿真参数、运行仿真并绘制结果图表。仿真操作步骤可参考配套视频。
41 0

热门文章

最新文章

下一篇
无影云桌面