基于概率论的MATLAB仿真,内容包括非共轭条件下的后验概率的推导,共轭条件下的非完备集的后验概率的推导

简介: 基于概率论的MATLAB仿真,内容包括非共轭条件下的后验概率的推导,共轭条件下的非完备集的后验概率的推导

1.算法描述
1.1先验概率的推导

    根据贝叶斯概率论可知,某一事件的后验概率可以根据先验概率来获得,因此,这里首先对事件的先验概率分布进行理论的推导。假设测量的腐蚀数据服从gamma分布,其概率密度函数可以通过如下表达式表示:

image.png

   根据参考文献1和参考文献2的理论推导可知,采用反gamma分布,可以作为腐蚀数据的先验分布,即:

image.png

   公式3为公式2的自然指数形式,公式3中,x表示腐蚀数据,参数a和b分别表示反gamma分布的参数估计值。 

image.png
image.png

从公式7可知,此时后验概率值则取决于最后一次测量结果.根据上述推导过程,完备集的后验概率可以通过如下公式计算得到:

image.png

   但是完备集下的后验概率所满足的公式3条件和公式4条件,在实际中往往不太可能发生,因此需要考虑非完备集下的后验概率计算方法。  

1.2.共轭条件下的非完备集的后验概率的推导

    完备集下的后验概率不太适用于实际情况,因此,对于实际情况,需要考虑非完备集下的后验概率的计算。非完备集下的后验概率是关于随机事件的条件概率,是在相关证据给定并纳入考虑之后的条件概率。后验概率和先验概率满足如下关系式:

image.png

  从公式可知,后验概率等同于先验函数和似然函数的乘积,这里先验函数根据本文公式2获得,下面主要对似然函数进行公式推导,根据参考文献5的相关推导过程可知,后验概率的基本计算公式如下:  

image.png

根据本文上述章节的介绍,参数A和B满足如下关系式:

image.png

因此,似然函数可以通过如下表达式表示:

image.png
image.png

2.仿真效果预览
matlab2022a仿真结果如下:

image.png
image.png

3.MATLAB核心程序

K_l        = length(Lt(:,:,kk1)); %total number of l
 
for i = 1:K_d
    if Nn2(i) == 1
       dt1(i,:,kk1) = dt1(i,:,kk1); 
    else
       dt1(i,:,kk1) = 5.39 + 0.19*dt1(i,:,kk1) - 0.02*Lt(i,:,kk1) + 0.35*Nn2(i);
    end
end
%m->mm
dt1        = 1000*dt1;
%to obtaion a average number of do_rate and Lo_rate
do_rate    = sum(dt1(:,:,kk1))/K_d;  
Lo_rate    = sum(Lt(:,:,kk1))/K_l; 
% Q = sqrt(1+0.31*power(Lo_rate/sqrt(D/t),2)); 
% Q--length of correction factor
Q1         =(Lo_rate/sqrt(D_t))^2;
Q          = sqrt(1+0.31*Q1);
% pf_rate=(2*t*sigma_u*(1-do_rate/t))/(D-t)/(1-(do_rate/t)/Q);
% pf -- failure pressure
pf_rate_1  = 2*t*sigma_u*(1-do_rate/t);
pf_rate_2  =(D-t)*(1-do_rate/t/Q);
pf_rate    = pf_rate_1/pf_rate_2;
grid_dist  = 0.1/20; % in order to get the obvious result on the plot
x          = grid_dist:grid_dist:pf_rate*0.015;
%fit the contineous inverted gamma density to the data
par        = invgamafit(0.1); % change pf_rate from mPa to kPa, in order to get the obvious result on the plot
a          = par(1);
b          = 1/par(2);
%Examining inverted gamma distributed prior
prior     = exp(a*log(b)-gammaln(a)+(-a-1)*log(x)-b./x);
load r2.mat
prior     = post_imp_prior';
%Examination of inverted gamma post prior after perfect inspection
A         = a + dt1(K_d)/pf_rate^2;
B         = b +  Lt(K_l)/pf_rate^2;
postprior = exp(A*log(B)-gammaln(A)-(A+1)*log(x)-B./x);
%***********************************************************************************
% % %***********************************************************************************
% %定义likelyhood
% likeliprod = likelihoods(x,t,dt(:,:,kk1),Lt(:,:,kk1),Nn2);
%***********************************************************************************
%这个部分和之前的不一样了,修改后的如下所示:
%***********************************************************************************
%对prior参数进行随机化构造
m = 10;
for ijk = 1:m
    ijk
    %***********************************************************************************
    %***********************************************************************************
    %Calaulate the depth change rate and length change rate with time 
    for kk1 =1:(kk -1);
        drate1 = normrnd(drate,drateS, nsamples,1, kk1); % Measured defect depth @ time T 
        Lrate1 = normrnd(Lrate,LrateS, nsamples,1, kk1); % Measured defect length @ time T    
        if kk1 == 1
           dt(:,:,kk1) = do1(:,:,kk1) + drate1(:,:,kk1)*(delT) ; 
           dt1(:,:,kk1) = dt(:,:,kk1);
           Lt(:,:,kk1) = Lo1(:,:,kk1) + Lrate1(:,:,kk1)*(delT) ;    
        else 
           dt(:,:,kk1) = dt(:,:,kk1-1)   + drate1(:,:,kk1)*(delT);
           dt1(:,:,kk1) = dt(:,:,kk1) ;
           Lt(:,:,kk1) = Lt(:,:,kk1-1) + Lrate1(:,:,kk1)*(delT); 
        end  
    end
    K_d        = length(dt(:,:,kk1)); %total number of d
    K_l        = length(Lt(:,:,kk1)); %total number of l
    for i = 1:K_d
        if Nn2(i) == 1
           dt1(i,:,kk1) = dt1(i,:,kk1); 
        else
           dt1(i,:,kk1) = 5.39 + 0.19*dt1(i,:,kk1) - 0.02*Lt(i,:,kk1) + 0.35*Nn2(i);
        end
    end
    %m->mm
    dt1        = 1000*dt1;
    %to obtaion a average number of do_rate and Lo_rate
    do_rate    = sum(dt1(:,:,kk1))/K_d;  
    Lo_rate    = sum(Lt(:,:,kk1))/K_l; 
    % Q = sqrt(1+0.31*power(Lo_rate/sqrt(D/t),2)); 
    % Q--length of correction factor
    Q1         =(Lo_rate/sqrt(D_t))^2;
    Q          = sqrt(1+0.31*Q1);
    % pf_rate=(2*t*sigma_u*(1-do_rate/t))/(D-t)/(1-(do_rate/t)/Q);
    % pf -- failure pressure
    pf_rate_1  = 2*t*sigma_u*(1-do_rate/t);
    pf_rate_2  =(D-t)*(1-do_rate/t/Q);
    pf_rate    = pf_rate_1/pf_rate_2;
    grid_dist  = 0.1/20; % in order to get the obvious result on the plot
    x          = grid_dist:grid_dist:pf_rate*0.015;
    %fit the contineous inverted gamma density to the data
    par        = invgamafit(0.1); % change pf_rate from mPa to kPa, in order to get the obvious result on the plot
    as(1,ijk)  = par(1);
    bs(1,ijk)  = 1/par(2);
    %***********************************************************************************
    %***********************************************************************************
end
相关文章
|
3天前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
2天前
|
机器学习/深度学习 算法 安全
m基于Q-Learning强化学习的路线规划和避障策略matlab仿真
MATLAB 2022a仿真实现了Q-Learning算法在路线规划与避障中的应用,展示了智能体在动态环境中学习最优路径的过程。Q-Learning通过学习动作价值函数Q(s,a)来最大化长期奖励,状态s和动作a分别代表智能体的位置和移动方向。核心程序包括迭代选择最优动作、更新Q矩阵及奖励机制(正奖励鼓励向目标移动,负奖励避开障碍,探索奖励平衡探索与利用)。最终,智能体能在复杂环境中找到安全高效的路径,体现了强化学习在自主导航的潜力。
8 0
|
3天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM-Attention的时间序列回归预测matlab仿真
摘要: 本文介绍了使用matlab2022a中优化后的算法,应用于时间序列回归预测,结合CNN、LSTM和Attention机制,提升预测性能。GWO算法用于优化深度学习模型的超参数,模拟灰狼社群行为以求全局最优。算法流程包括CNN提取局部特征,LSTM处理序列依赖,注意力机制聚焦相关历史信息。GWO的灰狼角色划分和迭代策略助力寻找最佳解。
|
3天前
|
算法 计算机视觉
基于高斯混合模型的视频背景提取和人员跟踪算法matlab仿真
该内容是关于使用MATLAB2013B实现基于高斯混合模型(GMM)的视频背景提取和人员跟踪算法。算法通过GMM建立背景模型,新帧与模型比较,提取前景并进行人员跟踪。文章附有程序代码示例,展示从读取视频到结果显示的流程。最后,结果保存在Result.mat文件中。
|
3天前
|
资源调度 算法 块存储
m基于遗传优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
MATLAB2022a仿真实现了遗传优化的LDPC码OSD译码算法,通过自动搜索最佳偏移参数ΔΔ以提升纠错性能。该算法结合了低密度奇偶校验码和有序统计译码理论,利用遗传算法进行全局优化,避免手动调整,提高译码效率。核心程序包括编码、调制、AWGN信道模拟及软输入软输出译码等步骤,通过仿真曲线展示了不同SNR下的误码率性能。
9 1
|
3天前
|
存储 算法 数据可视化
基于harris角点和RANSAC算法的图像拼接matlab仿真
本文介绍了使用MATLAB2022a进行图像拼接的流程,涉及Harris角点检测和RANSAC算法。Harris角点检测寻找图像中局部曲率变化显著的点,RANSAC则用于排除噪声和异常点,找到最佳匹配。核心程序包括自定义的Harris角点计算函数,RANSAC参数设置,以及匹配点的可视化和仿射变换矩阵计算,最终生成全景图像。
|
3天前
|
算法 Serverless
m基于遗传优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
MATLAB 2022a仿真实现了遗传优化的归一化最小和(NMS)译码算法,应用于低密度奇偶校验(LDPC)码。结果显示了遗传优化的迭代过程和误码率对比。遗传算法通过选择、交叉和变异操作寻找最佳归一化因子,以提升NMS译码性能。核心程序包括迭代优化、目标函数计算及性能绘图。最终,展示了SNR与误码率的关系,并保存了关键数据。
16 1
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于有序抖动块截断编码的水印嵌入和提取算法matlab仿真
这是一个关于数字图像水印嵌入的算法介绍。使用MATLAB2022a,该算法基于DOTC,结合抖动和量化误差隐藏,确保水印的鲁棒性和隐蔽性。图像被分为N*N块,根据水印信号进行二值化处理,通过调整重建电平的奇偶性嵌入水印。水印提取是嵌入过程的逆操作,通过重建电平恢复隐藏的水印比特。提供的代码片段展示了从块处理、水印嵌入到噪声攻击模拟及水印提取的过程,还包括PSNR和NC的计算,用于评估水印在不同噪声水平下的性能。
【Simulink】飞轮储能系统的建模与MATLAB仿真(永磁同步电机作为飞轮驱动电机)
【Simulink】飞轮储能系统的建模与MATLAB仿真(永磁同步电机作为飞轮驱动电机)
|
3天前
|
算法 计算机视觉
基于表面法线法的二维人脸图构建三维人脸模型matlab仿真
该内容概述了一个使用MATLAB2022a的二维人脸图像三维重建算法。首先,通过人脸检测和对齐,然后运用深度信息估计技术(如Shape from Shading)获取表面法线。接着,结合预训练的三维人脸模型库和二维关键点,通过迭代优化和全局优化构建三维模型。核心程序涉及图像处理、光源方向转换、反射率和表面法线计算,最终重构高度图并显示结果。该方法依赖多视角图像,单幅图像重建可能存在挑战。

热门文章

最新文章