[再寄小读者之数学篇](2014-06-23 二阶导数估计 [中国科学技术大学2013年高等数学B 考研试题])

简介: 设 $f(x)$ 二阶连续可导, $f(0)=f(1)=0$, $\dps{\max_{0\leq x\leq 1}f(x)=2}$. 证明: $$\bex \min_{0\leq x\leq 1}f''(x)\leq -16.

设 $f(x)$ 二阶连续可导, $f(0)=f(1)=0$, $\dps{\max_{0\leq x\leq 1}f(x)=2}$. 证明: $$\bex \min_{0\leq x\leq 1}f''(x)\leq -16. \eex$$

 

证明: 设 $$\bex \xi\in (0,1),\st f(\xi)=\max_{0\leq x\leq 1}f(x)=2\ra f'(\xi)=0. \eex$$ 在 $\xi$ 处由 Taylor 展式, $$\beex \bea 0=f(0)=f(\xi)+f'(\xi)(-\xi)+\cfrac{f''(\eta)}{2}(-\xi)^2,&0<\eta<\xi,\\ 0=f(1)=f(\xi)+f'(\xi)(1-\xi)+\cfrac{f''(\zeta)}{2}(1-\xi)^2,&\xi<\zeta<1. \eea \eeex$$ 于是 $$\bex f''(\eta)=-\cfrac{4}{\eta^2},\quad f''(\zeta)=-\cfrac{4}{(1-\xi)^2}. \eex$$ 若 $0<\xi\leq \cfrac{1}{2}$, 则 $$\bex \min_{0\leq x\leq 1}f''(x)\leq f''(\eta)\leq -16; \eex$$ 若 $\cfrac{1}{2}<\xi<1$, 则 $$\bex \min_{0\leq x\leq 1}f''(x)\leq f''(\zeta)=-16. \eex$$

目录
相关文章
|
4月前
24考研|高等数学的基础概念定理(三)——第三章|不定积分
24考研|高等数学的基础概念定理(三)——第三章|不定积分
|
4月前
24考研|高等数学的基础概念定理(二)——第二章|导数与微分
24考研|高等数学的基础概念定理(二)——第二章|导数与微分
|
4月前
24考研|高等数学的基础概念定理(一)——第一章|函数、极限、连续
24考研|高等数学的基础概念定理(一)——第一章|函数、极限、连续
|
机器学习/深度学习
【考研数学】常用数学公式大全
【考研数学】常用数学公式大全
315 0
【考研数学】常用数学公式大全
日期累加(北京理工大学考研机试题)
日期累加(北京理工大学考研机试题)
85 0
日期累加(北京理工大学考研机试题)
成绩排序2 (清华大学考研机试题)
成绩排序2 (清华大学考研机试题)
79 0
成绩排序2 (清华大学考研机试题)
成绩排序 (清华大学考研机试题)
成绩排序 (清华大学考研机试题)
95 0
成绩排序 (清华大学考研机试题)
|
人工智能 算法 大数据
峰哥读者从创业失败延毕一年,到考研985拿大厂offer,分享考研经历与经验
峰哥读者从创业失败延毕一年,到考研985拿大厂offer,分享考研经历与经验
峰哥读者从创业失败延毕一年,到考研985拿大厂offer,分享考研经历与经验
|
机器学习/深度学习 测试技术
【Programming Clip】06、07年清华计算机考研上机试题解答(个别测试用例无法通过)
作者:gnuhpc  出处:http://www.cnblogs.com/gnuhpc/ 1.清华计算机系研究生考试上机07年试题解答(自己今天上午做的,有一个不能完成所有测试用例~)   清华大学计算机科学与技术系 2007 年硕士研究生招生复试 2007 年 3 月 24 日 注意事项: 1. 试题共三题,总计 100 分,考试时间为一个半小时。
716 0
|
存储 固态存储 程序员
考研计算机组成原理总结(5)
考研计算机组成原理总结(5)
726 0

热门文章

最新文章