试求 $$\bex \vlm{n}n^2\sex{x^\frac{1}{n}-x^\frac{1}{n+1}},\quad x>0. \eex$$
解答: $$\beex \bea \mbox{原极限} &=\vlm{n}n^2\cdot x^\xi\ln x\sex{\frac{1}{n}-\frac{1}{n+1}}\quad\sex{\frac{1}{n+1}<\xi<\frac{1}{n}}\\ &=\ln x. \eea \eeex$$
试求 $$\bex \vlm{n}n^2\sex{x^\frac{1}{n}-x^\frac{1}{n+1}},\quad x>0. \eex$$
解答: $$\beex \bea \mbox{原极限} &=\vlm{n}n^2\cdot x^\xi\ln x\sex{\frac{1}{n}-\frac{1}{n+1}}\quad\sex{\frac{1}{n+1}<\xi<\frac{1}{n}}\\ &=\ln x. \eea \eeex$$