Newton冷却定理微分数学公式推导

简介: Newton冷却定理微分数学公式推导

Newton冷却定理微分数学公式推导



相关文章
|
8月前
高等数学II-知识点(3)——广义积分、定积分几何应用、定积分求曲线弧长、常微分方程、可分离变量的微分方程、一阶微分方程-齐次方程、一阶线性微分方程
高等数学II-知识点(3)——广义积分、定积分几何应用、定积分求曲线弧长、常微分方程、可分离变量的微分方程、一阶微分方程-齐次方程、一阶线性微分方程
98 0
高等数学微积分公式大全
高等数学微积分公式大全
269 0
差分方程模型:兔子繁殖问题(斐波拉契数列)
差分方程模型:兔子繁殖问题(斐波拉契数列)
183 0
|
机器学习/深度学习 算法 Python
数学和微分角度理解梯度下降算法
数学和微分角度理解梯度下降算法
127 0
微积分:微分
1.代数推导 假设我们有一个正方形初始边长为X,这时面积S1=x² 然后正方形的边长增加△x,此时面积S2=(x+△x)² 变化的面积大小是△s=(x+△x)²- x²=2x△x+(△x)² 观察可以发现当△x越小(△x)²会比2x△x率先趋近于0,也就是换句话说,当△x很小时我们可以近似的认为 △s=2x△x 仔细观察上面的式子,这个2X其实就是x的平方的导数,这时候我们是不是就理解了为什么说导数可以描述变化趋势的快慢。
156 0
数学|如何求解线性方程系数?
数学|如何求解线性方程系数?
190 0
概率论|贝叶斯公式及其推论的理解和运用
概率论|贝叶斯公式及其推论的理解和运用
204 0
|
人工智能 开发者
求解拉格朗日乘子法 | 学习笔记
快速学习求解拉格朗日乘子法
求解拉格朗日乘子法 | 学习笔记
|
算法
F#实现Runge–Kutta算法求解常微分方程
不少工程问题中涉及的微分方程,我们很难求出方程的解析解,或者说根本不存在精确的解析解。此时,我们需要利用电脑,结合数值分析的方法来近似求出微分方程的相关解,并研究其性质。通过求出多个自变量的值,并求出对应的解,那么可以绘制出图形来辅助研究方程的特征。本文将介绍F#实现Runge–Kutta算法求解微分方程。
876 0
F#实现Runge–Kutta算法求解常微分方程
|
机器学习/深度学习
【组合数学】递推方程 ( 常系数线性非齐次递推方程求解 | 递推方程标准型及通解 | 递推方程通解证明 )
【组合数学】递推方程 ( 常系数线性非齐次递推方程求解 | 递推方程标准型及通解 | 递推方程通解证明 )
213 0