[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.3

简介: (1). Let $\sed{A_\al}$ be a family of mutually commuting operators. Then, there exists a common Schur basis for $\sed{A_\al}$.

(1). Let $\sed{A_\al}$ be a family of mutually commuting operators. Then, there exists a common Schur basis for $\sed{A_\al}$. In other words, there exists a unitary $Q$ such that $Q^*A_\al Q$ is upper triangular for all $\al$.

 

(2). Let $\sed{A_\al}$ be a family of mutually commuting normal operators. Then, there exists a unitary $Q$ such that $Q^*A_\al Q$ is diagonal for all $\al$.

 

Solution.  

 

(1). We may assume $A_\al$ is not the multiplier of the identity operator (otherwise, we could just delete it). We prove by induction on the dimension $n$ of the vector space $\scrH$ we consider. If $n=1$, then it is obvious true. Suppose the conclusion holds for vector spaces with dimension $\leq n-1$. To prove the statements for the case $\dim \scrH=n$, we need only to prove that there exists an one-dimensional subspace that is $A_\al$-invariant for each $\al$. In fact, $$\beex \bea &\quad \sex{\ba{cc} 0&b\\ 0&B \ea}\sex{\ba{cc} 0&c\\ 0&C \ea}=\sex{\ba{cc} 0&c\\ 0&C \ea}\sex{\ba{cc} 0&b\\ 0&B \ea}\\ &\ra \sex{\ba{cc} 0&bC\\ 0&BC \ea}=\sex{\ba{cc} 0&cB\\ 0&CB \ea}\\ &\ra BC=CB. \eea \eeex$$ Fix a $\beta$, suppose $\lm$ is an eigenvalue of $A_\beta$, then $$\bex W=\sed{x\in\scrH;\ A_\beta x=\lm x} \eex$$ is $A_\al$-invariant. Indeed, $$\bex A_\beta A_\al x=A_\al A_\beta x=\lm A_\al x. \eex$$ Thus, $W\neq \scrH$ (by the fact that $A_\beta$ is not the multiplier of the identity operator), and $$\bex \dim W<\dim \scrH. \eex$$ Also, $A_\al$ may be viewed as a commuting operator on $W$, and the induction hypothesis may be invoked to deduce that there exists a orthonomal basis $x_1,\cdots,x_k$ of $W$ such that $$\bex A_\al(x_1,\cdots,x_k)=(x_1,\cdots,x_k)\sex{\ba{ccc} *&&*\\ &\ddots&\\ 0&&* \ea}. \eex$$ The subspace spanned by $x_1$ is then one-dimensional, and is $A_\al$-invariant for each $\al$.

 

(2). By (1), $\exists$ unitary $Q$ such that $A=QU_\al Q^*$ for some upper triangular $U_\al$. Since $A_\al$ is normal, we have $U_\al^*U_\al=U_\al U_\al^*$. By comparing the diagonal entries, we see readily that $U_\al$ is diagonal, as desired.

目录
相关文章
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.9
(Schur's Theorem) If $A$ is positive, then $$\bex \per(A)\geq \det A. \eex$$   Solution. By Exercise I.
550 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.8
Prove that for any matrices $A,B$ we have $$\bex |\per (AB)|^2\leq \per (AA^*)\cdot \per (B^*B). \eex$$ (The corresponding relation for determinants is an easy equality.
583 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$, $1\leq j\leq k$, can be found so that $a_{ij}=\sef{x_i,x_j}$ for all $i,j$.
643 0
|
资源调度
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is equal to the permanent of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.
549 0
|
资源调度
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex$$ is equal to the determinant of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.
620 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.2
The elementary tensors $x\otimes \cdots \otimes x$, with all factors equal, are all in the subspace $\vee^k\scrH$.
448 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.4
If $\dim \scrH=3$, then $\dim \otimes^3\scrH =27$, $\dim \wedge^3\scrH =1$ and $\dim \vee^3\scrH =10$.
697 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.3
Let $\scrM$ be a $p$-dimensional subspace of $\scrH$ and $\scrN$ its orthogonal complement. Choosing $j$ vectors from $\scrM$ and $k-j$ vectors from $...
717 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK)$ in which the elementary tensor $k\otimes h^*$co...
656 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and its inverse is $$\bex \sex{\ba{cc} I&-A\\ 0&I \ea}.
819 0