[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.8

简介: Prove that for any matrices $A,B$ we have $$\bex |\per (AB)|^2\leq \per (AA^*)\cdot \per (B^*B). \eex$$ (The corresponding relation for determinants is an easy equality.

Prove that for any matrices $A,B$ we have $$\bex |\per (AB)|^2\leq \per (AA^*)\cdot \per (B^*B). \eex$$ (The corresponding relation for determinants is an easy equality.)

 

Solution. Let $$\bex A=\sex{\ba{cc} \al_1\\ \vdots\\ \al_n \ea},\quad B=\sex{\beta_1,\cdots,\beta_n}. \eex$$ Then $$\bex AB=\sex{\sef{\al_i,\beta_j}}. \eex$$ By Exercise I.5.7, $$\beex \bea |\per (AB)|^2 &=\sev{\per (\sef{\al_i,\beta_j})}^2\\ &\leq \per (\sef{\al_i,\al_j})\cdot \per (\sef{\beta_i,\beta_j})\\ &=\per(AA^*)\cdot \per(B^*B). \eea \eeex$$

目录
相关文章
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$, $1\leq j\leq k$, can be found so that $a_{ij}=\sef{x_i,x_j}$ for all $i,j$.
623 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.3
Let $\scrM$ be a $p$-dimensional subspace of $\scrH$ and $\scrN$ its orthogonal complement. Choosing $j$ vectors from $\scrM$ and $k-j$ vectors from $...
683 0
|
应用服务中间件 AHAS Perl
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.6
Let $A$ be a nilpotent operator. Show how to obtain, from aJordan basis for $A$, aJordan basis of $\wedge^2A$.
724 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.4
If $\dim \scrH=3$, then $\dim \otimes^3\scrH =27$, $\dim \wedge^3\scrH =1$ and $\dim \vee^3\scrH =10$.
683 0
|
资源调度
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is equal to the permanent of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.
533 0
|
资源调度
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex$$ is equal to the determinant of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.
603 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.2
The elementary tensors $x\otimes \cdots \otimes x$, with all factors equal, are all in the subspace $\vee^k\scrH$.
440 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK)$ in which the elementary tensor $k\otimes h^*$co...
633 0
|
机器学习/深度学习
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographically ordered basis on the space of tensors, the matri...
729 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. The set of all unitary matrices is a compact subset of all $n\times n$ matrices.
716 0