[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

简介: (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK)$ in which the elementary tensor $k\otimes h^*$co...

(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK)$ in which the elementary tensor $k\otimes h^*$corresponds to the linear map that takes a vector $u$ of $\scrH$ to $\sef{h,u}k$. This linear transformation has rank one and all rank one transformations can be obtained in this way.

 

(2). An explicit transformation of this isomorphism $\varphi$ is outlined below. Let $e_1,\cdots,e_n$ be an orthonormal basis for $\scrH$ and for $\scrH^*$. Let $f_1,\cdots,f_m$ be an orthonormal basis of $\scrK$. Identify each element of $\scrL(\scrH,\scrK)$ with it matrix with respect to these bases. Let $E_{ij}$ be the matrix all whose entries are zero except the $(i,j)$-entry, which is $1$. Show that $\varphi(f_i\otimes e_j)=E_{ij}$ for all $1\leq i\leq m$, $1\leq j\leq n$. Thus, if $A$ is any $m\times n$ matrix with entries $a_{ij}$, then $$\bex \varphi^{-1}(A)=\sum_{i,j}a_{ij}(f_i\otimes e_j) =\sum_{i,j}(Ae_j)\otimes e_j. \eex$$

 

(3). the space $\scrL(\scrH,\scrK)$ is a Hilbert space with inner product $$\bex \sef{A,B}=\tr A^*B. \eex$$ The set $E_{ij}$, $1\leq i\leq m$, $1\leq j\leq n$ is an orthonormal basis for this space. Show that the map $\varphi$ is a Hilbert space isomorphism; i.e., $$\bex \sef{\varphi^{-1}(A),\varphi^{-1}(B)} =\sef{A,B},\quad\forall\ A,B. \eex$$

 

Solution.

 

(1). $$\beex \ba{rcl} \scrK\otimes \scrH^*&\to&\scrL(\scrH,\scrK)\\ k\otimes h^*&\mapsto&\sex{u\mapsto \sef{h,u}k}. \ea \eeex$$ On the other hand, if $f\in \scrL(\scrH,\scrK)$ is of rank one, then there exists some $0\neq v\in \scrK$ such that $$\bex f(u)=a_uv. \eex$$ Since $$\beex \bea a_{bu}v=f(bu)=ba_uv\ra a_{bu}=ba_u,\\ a_{u_1+u_2}v=f(u_1+u_2)=a_{u_1}v+a_{u_2}v&\ra a_{u_1+u_2}=a_{u_1}+a_{u_2}, \eea \eeex$$ we have $$\bex \scrH\ni u\mapsto a_u\in \bbC \eex$$ is linear, and thus there exists some $h\in \scrH$ such that $$\bex a_u=\sef{h,u}\ra f(u)=\sef{h,u}k. \eex$$

 

(2). As noticed in (1), $$\bex \varphi(f_i\otimes e_j)(e_k)=\sef{e_j,e_k}f_i=\delta_{jk}f_i, \eex$$ and thus $$\bex \varphi(f_i\otimes e_j)(e_1,\cdots,e_n) =(f_1,\cdots,f_m)E_{ij}. \eex$$

 

(3). $$\beex \bea \sef{A,B}&=\sum_{i,j} \bar a_{ji}b_{ji},\\ \sef{E_{ij},E_{kl}} &=\sum_{p,q}\delta_{pi}\delta_{qj}\cdot \delta_{pk}\delta_{ql}\\ &=\delta_{ik}\delta_{jl}\sum_{p,q}\delta_{pi}\delta_{qj},\\ \sef{\varphi^{-1}(A),\varphi^{-1}(B)} &=\sum_{j,k} \sef{(Ae_j)\otimes e_j,(Be_k)\otimes e_k}\\ &=\sum_{j,k} \sef{Ae_j,Be_k}\sef{e_j,e_k}\\ &=\sum_{j,k} \sef{Ae_j,Be_j}\\ &=\sum_{i,j}\bar a_{ij}b_{ij}\\ &=\sef{A,B}. \eea \eeex$$

目录
相关文章
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$, $1\leq j\leq k$, can be found so that $a_{ij}=\sef{x_i,x_j}$ for all $i,j$.
644 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.4
If $\dim \scrH=3$, then $\dim \otimes^3\scrH =27$, $\dim \wedge^3\scrH =1$ and $\dim \vee^3\scrH =10$.
698 0
|
资源调度
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is equal to the permanent of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.
550 0
|
应用服务中间件 AHAS Perl
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.6
Let $A$ be a nilpotent operator. Show how to obtain, from aJordan basis for $A$, aJordan basis of $\wedge^2A$.
789 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.2
The elementary tensors $x\otimes \cdots \otimes x$, with all factors equal, are all in the subspace $\vee^k\scrH$.
449 0
|
机器学习/深度学习
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographically ordered basis on the space of tensors, the matri...
752 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.10
(1). The numerical radius defines a norm on $\scrL(\scrH)$.   (2). $w(UAU^*)=w(A)$ for all $U\in \U(n)$.
549 0
|
关系型数据库
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.4
(1). The singular value decomposition leads tot eh polar decomposition: Every operator $A$ can be written as $A=UP$, where $U$ is unitary and $P$ is positive.
842 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.6
If $A$ is a contraction, show that $$\bex A^*(I-AA^*)^{1/2}=(I-A^*A)^{1/2}A^*. \eex$$ Use this to show that if $A$ is a contraction on $\scrH$, then t...
786 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. The set of all unitary matrices is a compact subset of all $n\times n$ matrices.
736 0