[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

简介: (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK)$ in which the elementary tensor $k\otimes h^*$co...

(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK)$ in which the elementary tensor $k\otimes h^*$corresponds to the linear map that takes a vector $u$ of $\scrH$ to $\sef{h,u}k$. This linear transformation has rank one and all rank one transformations can be obtained in this way.

 

(2). An explicit transformation of this isomorphism $\varphi$ is outlined below. Let $e_1,\cdots,e_n$ be an orthonormal basis for $\scrH$ and for $\scrH^*$. Let $f_1,\cdots,f_m$ be an orthonormal basis of $\scrK$. Identify each element of $\scrL(\scrH,\scrK)$ with it matrix with respect to these bases. Let $E_{ij}$ be the matrix all whose entries are zero except the $(i,j)$-entry, which is $1$. Show that $\varphi(f_i\otimes e_j)=E_{ij}$ for all $1\leq i\leq m$, $1\leq j\leq n$. Thus, if $A$ is any $m\times n$ matrix with entries $a_{ij}$, then $$\bex \varphi^{-1}(A)=\sum_{i,j}a_{ij}(f_i\otimes e_j) =\sum_{i,j}(Ae_j)\otimes e_j. \eex$$

 

(3). the space $\scrL(\scrH,\scrK)$ is a Hilbert space with inner product $$\bex \sef{A,B}=\tr A^*B. \eex$$ The set $E_{ij}$, $1\leq i\leq m$, $1\leq j\leq n$ is an orthonormal basis for this space. Show that the map $\varphi$ is a Hilbert space isomorphism; i.e., $$\bex \sef{\varphi^{-1}(A),\varphi^{-1}(B)} =\sef{A,B},\quad\forall\ A,B. \eex$$

 

Solution.

 

(1). $$\beex \ba{rcl} \scrK\otimes \scrH^*&\to&\scrL(\scrH,\scrK)\\ k\otimes h^*&\mapsto&\sex{u\mapsto \sef{h,u}k}. \ea \eeex$$ On the other hand, if $f\in \scrL(\scrH,\scrK)$ is of rank one, then there exists some $0\neq v\in \scrK$ such that $$\bex f(u)=a_uv. \eex$$ Since $$\beex \bea a_{bu}v=f(bu)=ba_uv\ra a_{bu}=ba_u,\\ a_{u_1+u_2}v=f(u_1+u_2)=a_{u_1}v+a_{u_2}v&\ra a_{u_1+u_2}=a_{u_1}+a_{u_2}, \eea \eeex$$ we have $$\bex \scrH\ni u\mapsto a_u\in \bbC \eex$$ is linear, and thus there exists some $h\in \scrH$ such that $$\bex a_u=\sef{h,u}\ra f(u)=\sef{h,u}k. \eex$$

 

(2). As noticed in (1), $$\bex \varphi(f_i\otimes e_j)(e_k)=\sef{e_j,e_k}f_i=\delta_{jk}f_i, \eex$$ and thus $$\bex \varphi(f_i\otimes e_j)(e_1,\cdots,e_n) =(f_1,\cdots,f_m)E_{ij}. \eex$$

 

(3). $$\beex \bea \sef{A,B}&=\sum_{i,j} \bar a_{ji}b_{ji},\\ \sef{E_{ij},E_{kl}} &=\sum_{p,q}\delta_{pi}\delta_{qj}\cdot \delta_{pk}\delta_{ql}\\ &=\delta_{ik}\delta_{jl}\sum_{p,q}\delta_{pi}\delta_{qj},\\ \sef{\varphi^{-1}(A),\varphi^{-1}(B)} &=\sum_{j,k} \sef{(Ae_j)\otimes e_j,(Be_k)\otimes e_k}\\ &=\sum_{j,k} \sef{Ae_j,Be_k}\sef{e_j,e_k}\\ &=\sum_{j,k} \sef{Ae_j,Be_j}\\ &=\sum_{i,j}\bar a_{ij}b_{ij}\\ &=\sef{A,B}. \eea \eeex$$

目录
相关文章
|
传感器 机器学习/深度学习 人工智能
【AI 现况分析】AI 如何落地到机器人技术上?
【1月更文挑战第27天】【AI 现况分析】AI 如何落地到机器人技术上?
|
SQL 关系型数据库 MySQL
ShardingSphere-Sharding-Proxy(安装和分表配置)| 学习笔记
快速学习ShardingSphere-Sharding-Proxy(安装和分表配置)。
ShardingSphere-Sharding-Proxy(安装和分表配置)| 学习笔记
|
小程序
微信小程序:本地开发环境和线上环境配置
微信小程序:本地开发环境和线上环境配置
970 0
|
开发框架 JSON 前端开发
Go主流框架对比:Gin Echo Beego Iris
由于go的标准库非常丰富,尤其是net/http包的存在,基本上把别的语言需要通过框架搞的事情都做了,不用框架光用标准库也能顺畅的开发需求了。
2905 0
|
JavaScript Java 测试技术
基于ssm+vue.js+uniapp小程序的云上水果超市附带文章和源代码部署视频讲解等
基于ssm+vue.js+uniapp小程序的云上水果超市附带文章和源代码部署视频讲解等
74 0
|
JavaScript
「Vue面试题」动态给vue的data添加一个新的属性时会发生什么?怎样去解决的?
「Vue面试题」动态给vue的data添加一个新的属性时会发生什么?怎样去解决的?
101 0
|
监控 Java BI
Cat学习
Cat学习
239 0
|
Java 测试技术 数据库
SpringBoot的热布署和多环境配置(四)中
SpringBoot的热布署和多环境配置(四)
154 0
SpringBoot的热布署和多环境配置(四)中