[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.6

简介: Let $A$ be a nilpotent operator. Show how to obtain, from aJordan basis for $A$, aJordan basis of $\wedge^2A$.

Let $A$ be a nilpotent operator. Show how to obtain, from aJordan basis for $A$, aJordan basis of $\wedge^2A$.

 

Solution. Since $A$ is nilpotent, each eigenvalue of $A$ is zero, and thus there exists an basis $e_1,\cdot,e_n$ of $\scrH$ such that $$\bex A(e_1,\cdots,e_n)=(e_1,\cdots,e_n) \sex{\ba{cccc} 0_s&&&\\ &J_1&&\\ &&\ddots&\\ &&&J_t \ea},\quad J_{i}=\sex{\ba{cccc} 0&1&&\\ &\ddots&\ddots&\\ &&\ddots&1\\ &&&0 \ea}_{n_i\times n_i} \eex$$ with $$\bex s+\sum_{i=1}^t n_i=n. \eex$$ Hence $Ae_i=0$ for $$\bex i\in S=\sed{1\leq i\leq s+1, s+\sum_{i=1}^jn_i+1,\ j=1,\cdots,t-1}, \eex$$ and $Ae_k=0$ for $$\bex k\in T=\cup_{j=1}^t T_j,\quad T_j=\sed{s+\sum_{i=1}^{j-1}n_i+2\leq k\leq s+\sum_{i=1}^j n_i+2}. \eex$$ Thus $$\bex k\neq j,\ k,j\in T\lra 0\neq \wedge^2A(e_k\wedge e_l)=e_{k-1}\wedge e_{l-1}. \eex$$ Hence $\wedge^2 A$ has a Jordan basis $$\bex e_i\wedge e_j;(i\in S,i<j\leq n) \eex$$ $$\bex e_k\wedge e_{k+1};\quad\sex{k\in T}; \eex$$ $$\bex e_k\wedge e_{k+2};\quad\sex{k\in T}; \eex$$ $$\bex \cdots,\quad e_{s+2}\wedge e_n. \eex$$

目录
相关文章
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$, $1\leq j\leq k$, can be found so that $a_{ij}=\sef{x_i,x_j}$ for all $i,j$.
647 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.8
Prove that for any matrices $A,B$ we have $$\bex |\per (AB)|^2\leq \per (AA^*)\cdot \per (B^*B). \eex$$ (The corresponding relation for determinants is an easy equality.
590 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.9
(Schur's Theorem) If $A$ is positive, then $$\bex \per(A)\geq \det A. \eex$$   Solution. By Exercise I.
555 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.4
If $\dim \scrH=3$, then $\dim \otimes^3\scrH =27$, $\dim \wedge^3\scrH =1$ and $\dim \vee^3\scrH =10$.
701 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.7
Prove that for any vectors $$\bex u_1,\cdots,u_k,\quad v_1,\cdots,v_k, \eex$$ we have $$\bex |\det(\sef{u_i,v_j})|^2 \leq \det\sex{\sef{u_i,u_j}}\cdot...
606 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.3
Let $\scrM$ be a $p$-dimensional subspace of $\scrH$ and $\scrN$ its orthogonal complement. Choosing $j$ vectors from $\scrM$ and $k-j$ vectors from $...
721 0
|
Go
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition that a vector $w$ mush satisfy in order that the bil...
665 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.5
Suppose it is known that $\scrM$ is an invariant subspace for $A$. What invariant subspaces for $A\otimes A$ can be obtained from this information alone?   Solution.
526 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK)$ in which the elementary tensor $k\otimes h^*$co...
661 0
|
机器学习/深度学习
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographically ordered basis on the space of tensors, the matri...
755 0