[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.7

简介: Prove that for any vectors $$\bex u_1,\cdots,u_k,\quad v_1,\cdots,v_k, \eex$$ we have $$\bex |\det(\sef{u_i,v_j})|^2 \leq \det\sex{\sef{u_i,u_j}}\cdot...

Prove that for any vectors $$\bex u_1,\cdots,u_k,\quad v_1,\cdots,v_k, \eex$$ we have $$\bex |\det(\sef{u_i,v_j})|^2 \leq \det\sex{\sef{u_i,u_j}}\cdot \det \sex{\sef{v_i,v_j}}, \eex$$ $$\bex |\per(\sef{u_i,v_j})|^2 \leq \per\sex{\sef{u_i,u_j}}\cdot \per \sex{\sef{v_i,v_j}}. \eex$$

 

Solution. By Exercise I.5.1, $$\beex \bea |\det(\sef{u_i,v_j})|^2 &=\sev{ \sef{ u_1\wedge \cdots u_k,v_1\wedge \cdots \wedge v_k } }^2\\ &\leq \sen{ u_1\wedge \cdots \wedge u_k }^2\sen{ v_1\wedge \cdots \wedge v_k }^2\\ &=\det \sex{\sef{u_i,u_j}}\cdot \det \sex{\sef{v_i,v_j}}. \eea \eeex$$ Similarly, by Exercise I.5.5, we have $$\bex |\per(\sef{u_i,v_j})|^2 \leq \per\sex{\sef{u_i,u_j}}\cdot \per \sex{\sef{v_i,v_j}}. \eex$$ 

目录
相关文章
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$, $1\leq j\leq k$, can be found so that $a_{ij}=\sef{x_i,x_j}$ for all $i,j$.
647 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.8
Prove that for any matrices $A,B$ we have $$\bex |\per (AB)|^2\leq \per (AA^*)\cdot \per (B^*B). \eex$$ (The corresponding relation for determinants is an easy equality.
590 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.9
(Schur's Theorem) If $A$ is positive, then $$\bex \per(A)\geq \det A. \eex$$   Solution. By Exercise I.
555 0
|
资源调度
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is equal to the permanent of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.
552 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.2
The elementary tensors $x\otimes \cdots \otimes x$, with all factors equal, are all in the subspace $\vee^k\scrH$.
451 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.4
If $\dim \scrH=3$, then $\dim \otimes^3\scrH =27$, $\dim \wedge^3\scrH =1$ and $\dim \vee^3\scrH =10$.
701 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.3
Let $\scrM$ be a $p$-dimensional subspace of $\scrH$ and $\scrN$ its orthogonal complement. Choosing $j$ vectors from $\scrM$ and $k-j$ vectors from $...
721 0
|
资源调度
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex$$ is equal to the determinant of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.
626 0
|
机器学习/深度学习
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographically ordered basis on the space of tensors, the matri...
755 0
|
Go
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition that a vector $w$ mush satisfy in order that the bil...
665 0