[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.19

简介: 求 $\dps{\lim_{x\to +\infty} \int_x^{x+2} t\sex{\sin \frac{3}{t}}f(t)\rd t}$, 其中 $f(x)$ 可微, 且已知 $\dps{\lim_{t\to+\infty}f(t)=1}$.

求 $\dps{\lim_{x\to +\infty} \int_x^{x+2} t\sex{\sin \frac{3}{t}}f(t)\rd t}$, 其中 $f(x)$ 可微, 且已知 $\dps{\lim_{t\to+\infty}f(t)=1}$. (中国科学技术大学)

 

解答: $$\beex \bea \mbox{原极限}&=\vlm{x} \xi \sin \frac{3}{\xi} f(\xi)\cdot 2\quad\sex{x<\xi<x+2}\\ &=3\cdot 1\cdot 2=6. \eea \eeex$$

目录
相关文章
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.18
设 $\dps{\lim_{x\to 0}\frac{1}{bx-\sin x}\int_0^x \frac{t^2}{\sqrt{a+t^2}}\rd t=1}$, 试求正常数 $a$ 与 $b$. (华中师范大学)   解答: 由 $$\beex \bea 1&=\lim_{x\to 0}\...
879 0
|
关系型数据库 RDS
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.24
设 $\dps{f(x)=\int_x^{x+1}\sin t^2\rd t}$, 求证: $x>0$ 时, $\dps{|f(x)|
553 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.23
设函数 $f(x)$ 在 $[a,b]$ 上连续, $f(x)>0$. 又 $\dps{F(x)=\int_a^x f(t)\rd t+\int_b^x \frac{1}{f(t)}\rd t}$. 试证:   (1).
687 0
|
关系型数据库 RDS
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.17
设在 $\dps{\sex{0,\frac{\pi}{2}}}$ 内连续函数 $f(x)>0$, 且满足 $$\bex f^2(x)=\int_0^x f(t)\frac{\tan t}{\sqrt{1+2\tan^2t}}\rd t.
914 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.22
设 $f\in C[0,1]$ (即 $f$ 在 $[0,1]$ 上连续), 且在 $(0,1)$ 上可微, 若有 $\dps{8\int_\frac{7}{8}^1 f(x)\rd x=f(0)}$, 证明: 存在 $\xi\in (0,1)$, 使得 $f'(\xi)=0$.
767 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.10
对自然数 $n\geq 2$, 证明 $$\bex \frac{1}{\pi}\int_0^\frac{\pi}{2}\sev{\frac{\sin (2n+1)t}{\sin t}}\rd t
944 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.4
把满足下述条件 (1) 和 (2) 的实函数 $f$ 的全体记作 $F$:   (1). $f(x)$ 在闭区间 $[0,1]$ 上连续, 并且非负;   (2). $f(0)=0$, $f(1)=1$.
547 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.17
设 $a_n>0$ ($n=1,2,\cdots$) 且 $\dps{\vsm{n}a_n}$ 收敛, $\dps{r_n=\sum_{k=n}^\infty a_k}$. 试证:   (1). $\dps{\vsm{n}\frac{a_n}{r_n}}$ 发散.
1616 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.18
设 $f(x)$ 是在 $(-\infty,+\infty)$ 内的可微函数, 且满足:   (1). $f(x)>0$;   (2). $|f'(x)|\leq m|f(x)|$, 其中 $0
755 0
|
Perl
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.23
序列 $\sed{b_n}\ (n=1,2,\cdots)$ 具有下列性质: $$\bex b_n>0,\quad \vlm{n}b_n=+\infty. \eex$$ 做出序列 $\sed{a_n}$, 使 $$\bex a_n\geq 0,\quad \vsm{n}a_nk$.
743 0