[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.9

简介: 需要全部的解答, 请 http://www.cnblogs.com/zhangzujin/p/3527416.html    证明 $\dps{\int_0^\frac{\pi}{2} t\sex{\frac{\sin nt}{\sin t}}^4\rd t\frac{2}{\pi}x,\ 0

需要全部的解答, 请 http://www.cnblogs.com/zhangzujin/p/3527416.html 

 

证明 $\dps{\int_0^\frac{\pi}{2} t\sex{\frac{\sin nt}{\sin t}}^4\rd t<\frac{\pi^2n^2}{4}}$.

 

证明: 先回忆两个常用不等式:

 

(1). $|\sin nx|\leq n|\sin x|$, $\forall\ x$. 这可用数学归纳法证明. 当 $n=1$ 时结论自明. 设当 $n=k$ 时结论成立, 则 $$\beex \bea |\sin (k+1)x|&=|\sin kx\cos x+\cos kx\sin x|\\ &\leq |\sin kx|+|\sin x| \leq k|\sin x|+|\sin x| =(k+1)|\sin x|. \eea \eeex$$

 

(2). $\dps{\sin x>\frac{2}{\pi}x,\ 0<x<\frac{\pi}{2}}$. 几何上这是明显的. 分析上来看, $f(x)=\sin x$ 是凹函数, 而 $$\bex f(x)=f\sex{\sex{1-\frac{2x}{\pi}}\cdot 0+\frac{2x}{\pi}\cdot \frac{\pi}{2}} >\sex{1-\frac{2x}{\pi}}\cdot f(0)+\frac{2x}{\pi}\cdot f\sex{\frac{\pi}{2}}=\frac{2x}{\pi}. \eex$$ 往证题目. $$\beex \bea \int_0^\frac{\pi}{2} t\sex{\frac{\sin nt}{\sin t}}^4\rd t &=\int_0^\frac{\pi}{2n} +\int_\frac{\pi}{2n}^\frac{\pi}{2}t\sex{\frac{\sin nt}{\sin t}}^4\rd t\\ &\leq \int_0^\frac{\pi}{2n} t\sex{\frac{n\sin t}{\sin t}}^4\rd t +\int_\frac{\pi}{2n}^\frac{\pi}{2} t\sex{\frac{1}{\frac{2t}{\pi}}}^4\rd t\\ &=n^4\frac{t^2}{2}|_0^\frac{\pi}{2n} +\sex{\frac{\pi}{2}}^4\int_\frac{\pi}{2n}^\frac{\pi}{2} \frac{1}{t^3}\rd t\\ &=\frac{\pi^2n^2}{8} +\sex{\frac{\pi}{2}}^4\sex{-\frac{1}{2}t^{-2}}|_{\frac{\pi}{2n}}^\frac{\pi}{2}\\ &<\frac{\pi^2n^2}{8}+\sex{\frac{\pi}{2}}^4 \frac{1}{2} \sex{\frac{2n}{\pi}}^4\\ &=\frac{\pi^2n^2}{4}. \eea \eeex$$

目录
相关文章
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.21
设 $f(x)$ 的一阶导数在 $[0,1]$ 上连续, 且 $f(0)=f(1)=0$, 求证: $\dps{\sev{\int_0^1 f(x)\rd x}\leq \frac{1}{4}\max_{0\leq x\leq 1}|f'(x)|}$.
694 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.5
若 $f'(x)$ 在 $[0,2\pi]$ 上拦蓄, 且 $f'(x)\geq 0$, 则对任意正整数 $n$, 有 $$\bex \sev{\int_0^{2\pi}f(x)\sin nx\rd x}\leq \frac{2[f(2\pi)-f(0)]}{n}.
569 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.1
需要全部的解答, 请 http://www.cnblogs.com/zhangzujin/p/3527416.html    证明:   (1). $\dps{\sqrt{2}e^{-\frac{1}{2}}
647 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.7
$f(x)\neq 0$, 在 $[a,b]$ 上可微, $f(a)=f(b)=0$, 证明至少存在点 $c\in [a,b]$, 使 $$\bex |f'(c)|>\frac{4}{(b-a)^2}\int_a^b |f(x)|\rd x.
821 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.3
求证: $\dps{f(x)=\int_0^x (t-t^2)\sin^{2n}t\rd t}$ ($n$ 为正整数) 在 $x\geq 0$ 上的最大值不超过 $\dps{\frac{1}{(2n+2)(2n+3)}}$.
667 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.10
对自然数 $n\geq 2$, 证明 $$\bex \frac{1}{\pi}\int_0^\frac{\pi}{2}\sev{\frac{\sin (2n+1)t}{\sin t}}\rd t
923 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.22
举出一个收敛级数 $\dps{\vsm{n}a_n}$ 的例子, 使级数 $\dps{\vsm{n}a_n\ln n}$ 发散.   解答: 取 $\dps{a_n=\frac{1}{n\ln n\ln^2\ln n}}$, 则由 $$\bex \int_{e^e}^\infty \frac{1...
940 0
|
机器学习/深度学习
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.25
对函数 $$\bex \zeta(s)=\vsm{n}\frac{1}{n^s}\quad\sex{s>1}, \eex$$ 证明: $\dps{\zeta(s)=s\int_1^\infty \frac{\sez{x}}{x^{s+1}}\rd x}$, 其中 $\sez{x}$ 为 $x$ 的整数部分.
645 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.27
求 $\dps{\lim_{t\to +\infty}\sex{\frac{1}{t} +\frac{2t}{t^2+1^2}+\frac{2t^2}{t^2+2^2}+\cdots+\frac{2t}{t^2+n^2}+\cdots}}$.
602 0