[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.15

简介: $[a,b]$ 上的连续函数列 $\varphi_1,\varphi_2,\cdots,\varphi_n,\cdots$ 满足 $\dps{\int_a^b \varphi_n^2(x)\rd x=1}$.

$[a,b]$ 上的连续函数列 $\varphi_1,\varphi_2,\cdots,\varphi_n,\cdots$ 满足 $\dps{\int_a^b \varphi_n^2(x)\rd x=1}$. 证明: 存在自然数 $N$ 及定数 $c_1,c_2,\cdots,c_N$ 使 $\dps{\sum_{k=1}^N c_k^2=1}$, $\dps{\max_{x\in [a,b]} \sev{\sum_{k=1}^n c_k\varphi_k(x)}>100}$. (扬州师范学院)

 

证明: 由积分中值定理, 对待定的 $N$, $$\bex N=\int_a^b \sum_{k=1}^N \varphi_k^2(x)\rd x =(b-a)\sum_{k=1}^N \varphi_k^2(\xi). \eex$$ 取 $$\bex c_k=\frac{\varphi_k(\xi)}{\sqrt{\frac{N}{b-a}}}, \eex$$ 则 $\dps{\sum_{k=1}^N c_k^2=1}$, $$\bex \max_{x\in [a,b]}\sev{\sum_{k=1}^N c_k\varphi_k(x)} \geq \sev{\sum_{k=1}^N c_k\varphi_k(\xi)} =\frac{N}{\sqrt{\frac{N}{b-a}}}=\sqrt{N(b-a)}>100, \eex$$ 只要选 $\dps{N>\frac{100^2}{b-a}}$.

目录
相关文章
[裴礼文数学分析中的典型问题与方法习题参考解答]4.4.6
设函数 $f(x)$ 在 $[a,b]$ 上有连续导数, $f(a)=f(b)=0$. 试证: $$\bex \int_a^b |f(x)f'(x)|\rd x\leq \frac{b-a}{4}\int_a^b f'^2(x)\rd x, \eex$$ 并且 $\dps{\frac{b-a}{4}}$ 不能再小.
911 0
|
Perl
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.6
$f(x)$ 在 $[a,b]$ 上可导, $f'(x)\searrow$, $|f'(x)|\geq m>0$, 试证: $$\bex \sev{\int_a^b \cos f(x)\rd x}\leq \frac{2}{m}.
797 0
|
关系型数据库 RDS
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.17
设在 $\dps{\sex{0,\frac{\pi}{2}}}$ 内连续函数 $f(x)>0$, 且满足 $$\bex f^2(x)=\int_0^x f(t)\frac{\tan t}{\sqrt{1+2\tan^2t}}\rd t.
921 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.4.7
若 $u_1,u_2,\cdots,u_n\geq 0$, $u_1\cdot u_2\cdots u_n=1$, 则有 $u_1+u_2+\cdots+u_n\geq n$. 试证明这一结论, 并由它导出定理 3 (平均值定理).
592 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.4.9
设 $f(x)$ $\nearrow$ 连续 (当 $x\geq 0$ 时), $f(0)=0$, $a,b\geq 0$, 试证: $ab\leq af(a)+bf^{-1}(b)$. 证明: 由 Young 不等式, $$\bex ab\leq \int_0^a f(x)\rd x +\int_0^b f^{-1}(y)\rd y \leq af(a)+bf^{-1}(b).
679 0
|
机器学习/深度学习
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.7
设 $a_n=n^{n^{\alpha}}-1$, 讨论级数 $\dps{\vsm{n}a_n}$ 的敛散性.   解答: 当 $\al
856 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.14
设 $f(x)$ 处处连续, $\dps{F(x)=\frac{1}{2\delta}\int_{-\delta}^\delta f(x+t)\rd t}$, 其中 $\delta$ 为任何正数. 证明:   (1).
654 0
|
机器学习/深度学习
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.20
设 $a_n>0$, $\dps{\vsm{n}a_n}$ 收敛, $na_n$ 单调, 证明: $$\bex \vlm{n}na_n\ln n=0. \eex$$   证明: 又题意, $na_n\searrow 0$.
872 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.5.13
设 $f(x)$ 于任一有限区间 $[0,a]\ (a>0)$ 上正常可积, 于 $[0,\infty)$ 上绝对可积, 则 $$\bex \vlm{n}\int_0^\infty f(x)|\sin nx|\rd x =\frac{2}{\pi}\int_0^\infty f(x)\rd x.
877 0
|
前端开发 rax
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.2
证明: $\dps{0\leq x\leq \frac{\pi}{2}}$ 时, $\dps{\sin x\leq x-\frac{1}{3\pi}x^3}$.   证明: 由例 4.3.19, $$\bex \sin x
660 0

热门文章

最新文章