[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.12

简介: 证明: 若 $f(x)$ 为 $[0,1]$ 上的连续函数, 且对一切 $x\in [0,1]$ 有 $\dps{\int_0^x f(u)\rd u\geq f(x)\geq 0}$, 则 $f(x)\equiv 0$.

证明: 若 $f(x)$ 为 $[0,1]$ 上的连续函数, 且对一切 $x\in [0,1]$ 有 $\dps{\int_0^x f(u)\rd u\geq f(x)\geq 0}$, 则 $f(x)\equiv 0$. (上海师范大学)

 

证明: 设 $\dps{F(x)=\int_0^x f(t)\rd t\geq 0}$, 则 $$\beex \bea 0\leq F'(x)\leq F(x)&\ra \sez{e^{-x}F(x)}'\leq 0\\ &\ra e^{-x}F(x)\leq e^{-0}F(0)=0\ (0\leq x\leq 1)\\ &\ra F(x)\leq 0\ (0\leq x\leq 1)\\ &\ra F(x)=0\ (0\leq x\leq 1)\\ &\ra f(x)=F'(x)=0\ (0\leq x\leq 1). \eea \eeex$$

目录
相关文章
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.17
设 $a_n>0$ ($n=1,2,\cdots$) 且 $\dps{\vsm{n}a_n}$ 收敛, $\dps{r_n=\sum_{k=n}^\infty a_k}$. 试证:   (1). $\dps{\vsm{n}\frac{a_n}{r_n}}$ 发散.
1620 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.4.9
设 $f(x)$ $\nearrow$ 连续 (当 $x\geq 0$ 时), $f(0)=0$, $a,b\geq 0$, 试证: $ab\leq af(a)+bf^{-1}(b)$. 证明: 由 Young 不等式, $$\bex ab\leq \int_0^a f(x)\rd x +\int_0^b f^{-1}(y)\rd y \leq af(a)+bf^{-1}(b).
679 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.5.3
求 $\dps{\int_0^\infty f(x^p+x^{-p}) \frac{\ln x}{1+x^2}\rd x}$ (函数 $f(x)$ 连续)  解答: $$\beex \bea \mbox{原积分} &=\int_0^1+\int_1^\infty f(x^p+x^{-p}) \fr...
665 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.9
证明: 若有 $\al>0$, 使当 $n\geq n_0$ 时, $\dps{\frac{\ln \frac{1}{a_n}}{\ln n}\geq 1+\al\ (a_n>0)}$, 则级数 $\dps{\vsm{n}a_n\ (a_n>0)}$ 收敛; 若 $n\geq n_0$ 时, $\d...
794 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.3
求证: $\dps{f(x)=\int_0^x (t-t^2)\sin^{2n}t\rd t}$ ($n$ 为正整数) 在 $x\geq 0$ 上的最大值不超过 $\dps{\frac{1}{(2n+2)(2n+3)}}$.
689 0
|
关系型数据库 RDS
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.17
设在 $\dps{\sex{0,\frac{\pi}{2}}}$ 内连续函数 $f(x)>0$, 且满足 $$\bex f^2(x)=\int_0^x f(t)\frac{\tan t}{\sqrt{1+2\tan^2t}}\rd t.
921 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.3
证明级数 $$\bex 1 +\frac{1}{\sqrt{3}} -\frac{1}{\sqrt{2}} +\frac{1}{\sqrt{5}} +\frac{1}{\sqrt{7}} -\frac{1}{\sqrt{4}} +\frac{1}{\sqrt{9}} +\frac{1}{\sqrt{...
774 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.22
举出一个收敛级数 $\dps{\vsm{n}a_n}$ 的例子, 使级数 $\dps{\vsm{n}a_n\ln n}$ 发散.   解答: 取 $\dps{a_n=\frac{1}{n\ln n\ln^2\ln n}}$, 则由 $$\bex \int_{e^e}^\infty \frac{1...
961 0
|
机器学习/深度学习 Perl

热门文章

最新文章