[家里蹲大学数学杂志]第409期与正弦对数有关的一个积分不等式

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 试证: $$\bex 0

试证: $$\bex 0<\int_0^\infty \frac{\sin t}{\ln(1+x+t)}\rd t<\frac{2}{\ln(1+x)}. \eex$$

 

证明: $$\beex \bea \int_0^\infty \frac{\sin t}{\ln(1+x+t)}\rd t &=\sum_{k=0}^\infty\sez{ \int_{2k\pi}^{2k\pi+\pi} \frac{\sin t}{\ln(1+x+t)}\rd t +\int_{2k\pi+\pi}^{2k\pi+2\pi} \frac{\sin t}{\ln(1+x+t)}\rd t}\\ &=\sum_{k=0}^\infty \sez{\int_0^\pi \frac{\sin s}{\ln(1+x+2k\pi +s)}\rd s -\int_0^\pi\frac{\sin s}{\ln(1+x+2k\pi+\pi+s)}\rd s}\\ &=\sum_{k=0}^\infty \int_0^\pi \sin s\sez{ \frac{1}{\ln(1+x+2k\pi+s)}-\frac{1}{\ln(1+x+2k\pi+\pi+s)}}\rd s\\ &>0. \eea \eeex$$ 另一方面, $$\beex \bea \int_0^\infty \frac{\sin s}{\ln(1+x+s)}\rd s&=\int_0^\pi \sin s\sez{ \frac{1}{\ln(1+x+2k\pi+s)} -\frac{1}{\ln (1+x+2k\pi+\pi+s)}}\rd s\\ &<\int_0^\pi \sin s\sez{ \frac{1}{\ln(1+x+2k\pi)} -\frac{1}{\ln (1+x+2k\pi+\pi)}}\rd s\\ &\quad\sex{f(s)\equiv\frac{1}{\ln(1+x+2k\pi+s)} -\frac{1}{\ln (1+x+2k\pi+\pi+s)}\ \searrow}\\ &<\int_0^\pi \frac{\sin s}{\ln(1+x)}\rd s\\ &=\frac{2}{\ln(1+x)}. \eea \eeex$$

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
7月前
每日练习之数学——砝码和天平
每日练习之数学——砝码和天平
33 3
|
8月前
|
Shell
【高数定积分求解旋转体体积】 —— (上)高等数学|定积分|柱壳法|学习技巧
【高数定积分求解旋转体体积】 —— (上)高等数学|定积分|柱壳法|学习技巧
157 0
[家里蹲大学数学杂志]第442期一个积分不等式
设 $f$ 在 $[a,b]$ 上连续可微且 $f(a)=0$. 试证: $$\bex \int_a^b |f'(x)|^2\rd x\geq \frac{2}{(b-a)^2}\int_a^b |f(x)|^2\rd x.
674 0
[家里蹲大学数学杂志]第427期与反对称矩阵有关的一个行列式
设 $A$ 是 $n$ 阶实反对称矩阵, $D$ 是对角元均大于零的实对角矩阵. 试证: $|D+A|>0$.   证明: (1). 实反对称矩阵 $A$ 的特征值为纯虚数或零: $$\beex \bea &\quad A\al=\lm\al\quad(\al\neq 0)\\ &\ra A...
632 0
[家里蹲大学数学杂志]第425期一个定积分的计算
试求 $$\bex I=\int_2^4\frac{\sqrt{\ln (9-x)}}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}\rd x. \eex$$ 解答: $$\beex \bea I&=\int_4^2 \frac{\sqrt{\ln(t+3)}}{\sqrt{\...
786 0
[家里蹲大学数学杂志]第413期插值不等式
设 $$\bex k\geq 2,\quad f\in C^k(\bbR),\quad M_j=\sup_{x\in\bbR}|f^{(j)}(x)|\ (j=0,1,\cdots,k). \eex$$ 则 $$\bex M_j\leq 2^\frac{j(k-j)}{2}M_0^{1-\frac{j}{k}}M_k^\frac{j}{k}\ (j=0,1,\cdots,k).
761 0
|
Web App开发
[家里蹲大学数学杂志]第394期分组求积分因子法
在第 2.3 节中, 我们已经知道, 对 $$\bee\label{ode} M(x,y)\rd x+N(x,y)\rd y=0 \eee$$而言,   1. 若 $M_y=N_x$, 则 \eqref{ode} 为恰当 ode, 而可通过求解 pde 组 $$\bex u_x=M,\quad u_y=N \eex$$ 求出 $u$, 而 \eqref{ode} 的通解为 $u=C$.
914 0
|
机器学习/深度学习
[家里蹲大学数学杂志]第391期山东大学2014-2015-1微分几何期末考试试题
注意: A. 卷面分 $5$ 分, 试题总分 $95$ 分. 其中卷面整洁, 书写规范 ($5$ 分); 卷面较整洁, 书写较规范 ($3$ 分); 书写潦草, 乱涂乱画 ($0$ 分). B. 可能用的公式: $$\beex \bea 1.
1029 0
|
移动开发 weex
[家里蹲大学数学杂志]第241期利用正交变换和对称性求解三重积分
求 $$\bex I=\iiint_V|x+y+2z|\cdot |4x+4y-z|\rd x\rd y\rd z, \eex$$ 其中 $V$ 是区域 $\dps{x^2+y^2+\frac{z^2}{4}\leq 1}$.
831 0