[家里蹲大学数学杂志]第241期利用正交变换和对称性求解三重积分

简介: 求 $$\bex I=\iiint_V|x+y+2z|\cdot |4x+4y-z|\rd x\rd y\rd z, \eex$$ 其中 $V$ 是区域 $\dps{x^2+y^2+\frac{z^2}{4}\leq 1}$.

求 $$\bex I=\iiint_V|x+y+2z|\cdot |4x+4y-z|\rd x\rd y\rd z, \eex$$ 其中 $V$ 是区域 $\dps{x^2+y^2+\frac{z^2}{4}\leq 1}$. 

解答: 作变换 $$\bex x=u,\quad y=v,\quad \frac{z}{2}=w, \eex$$ 则 $$\beex \bea I&=\iiint_{u^2+v^2+w^2\leq 1} |u+v+4w|\cdot |4u+4v-2w|\cdot 2\rd u\rd v\rd w\\ &=4\iiint_{u^2+v^2+w^2\leq 1}|u+v+4w|\cdot |2u+2v-w|\rd u\rd v\rd w. \eea \eeex$$ 再作变换 $$\bex \tilde u=\frac{u+v+4w}{3\sqrt{2}},\quad \tilde v=\frac{2u+2v-w}{3},\quad \tilde w=\frac{-u+v}{\sqrt{2}}, \eex$$ 则 $$\beex \bea I&=4\iiint_{\tilde u^2+\tilde v^2+\tilde w^2\leq 1} |3\sqrt{2}\tilde u|\cdot |3\tilde v|\rd \tilde u\rd \tilde v\rd \tilde w\\ &=36\sqrt{2}\iiint_{x^2+y^2+z^2\leq 1} |xy|\rd x\rd y\rd z\\ &=144\sqrt{2}\iiint_{x^2+y^2+z^2\leq 1\atop x\geq 0,y\geq 0} xy\rd x\rd y\rd z\\ &=144\sqrt{2}\int_{-1}^1 \rd z \iint_{x^2+y^2\leq 1-z^2\atop x\geq0,y\geq 0}xy\rd x\rd y\\ &=144\sqrt{2}\int_{-1}^1 \rd z \int_0^{\sqrt{1-z^2}}\rd r \int_0^\frac{\pi}{2} r\cos \theta\cdot r\sin\theta\cdot r\rd \theta\\ &=\frac{96\sqrt{2}}{5}. \eea \eeex$$ 

点击此处查看答案

目录
相关文章
[家里蹲大学数学杂志]第442期一个积分不等式
设 $f$ 在 $[a,b]$ 上连续可微且 $f(a)=0$. 试证: $$\bex \int_a^b |f'(x)|^2\rd x\geq \frac{2}{(b-a)^2}\int_a^b |f(x)|^2\rd x.
674 0
[家里蹲大学数学杂志]第427期与反对称矩阵有关的一个行列式
设 $A$ 是 $n$ 阶实反对称矩阵, $D$ 是对角元均大于零的实对角矩阵. 试证: $|D+A|>0$.   证明: (1). 实反对称矩阵 $A$ 的特征值为纯虚数或零: $$\beex \bea &\quad A\al=\lm\al\quad(\al\neq 0)\\ &\ra A...
631 0
[家里蹲大学数学杂志]第425期一个定积分的计算
试求 $$\bex I=\int_2^4\frac{\sqrt{\ln (9-x)}}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}\rd x. \eex$$ 解答: $$\beex \bea I&=\int_4^2 \frac{\sqrt{\ln(t+3)}}{\sqrt{\...
786 0
[家里蹲大学数学杂志]第413期插值不等式
设 $$\bex k\geq 2,\quad f\in C^k(\bbR),\quad M_j=\sup_{x\in\bbR}|f^{(j)}(x)|\ (j=0,1,\cdots,k). \eex$$ 则 $$\bex M_j\leq 2^\frac{j(k-j)}{2}M_0^{1-\frac{j}{k}}M_k^\frac{j}{k}\ (j=0,1,\cdots,k).
761 0
[家里蹲大学数学杂志]第412期积分与极限
(云南大学). 已知 $$\bex 0\leq f\in C[0,\infty),\quad \int_0^\infty \frac{1}{f^2(x)}\rd x0,\ \exists\ X>0,\st A\geq 2X\ra \int_X^A\frac{1}{f^2(x)}\rd x0,\ \e...
829 0
|
Web App开发
[家里蹲大学数学杂志]第394期分组求积分因子法
在第 2.3 节中, 我们已经知道, 对 $$\bee\label{ode} M(x,y)\rd x+N(x,y)\rd y=0 \eee$$而言,   1. 若 $M_y=N_x$, 则 \eqref{ode} 为恰当 ode, 而可通过求解 pde 组 $$\bex u_x=M,\quad u_y=N \eex$$ 求出 $u$, 而 \eqref{ode} 的通解为 $u=C$.
914 0
|
机器学习/深度学习
[家里蹲大学数学杂志]第391期山东大学2014-2015-1微分几何期末考试试题
注意: A. 卷面分 $5$ 分, 试题总分 $95$ 分. 其中卷面整洁, 书写规范 ($5$ 分); 卷面较整洁, 书写较规范 ($3$ 分); 书写潦草, 乱涂乱画 ($0$ 分). B. 可能用的公式: $$\beex \bea 1.
1029 0
[家里蹲大学数学杂志]第204期矩阵空间的一个直和分解
设 $M_n(\bbF)$ 是数域 $\bbF$ 上 $n$ 阶矩阵全体构成的线性空间, $V,W$ 分别是上三角矩阵、反对称矩阵全体构成的线性子空间, 则 $$\bex M_n(\bbF)=V\oplus W.
730 0
|
前端开发 rax Perl
[家里蹲大学数学杂志]第243期对合矩阵的两个性质
设 $n$ 阶矩阵 $A$ 满足 $A^2=E$. 证明: (1) $A$ 相似于形如 $\dps{\sex{\ba{cc} E_s&\\ &-E_{n-s} \ea}}$ 的矩阵; (2) 对于任何正整数 $m,k$, 都有 $$\bex \rank(A+E)^m+\rank(A-E)^k=n.
647 0

热门文章

最新文章