C++ 虚函数表解析

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: C++ 虚函数表解析 http://blog.csdn.net/haoel/article/details/1948051 C++中虚函数工作原理和(虚)继承类的内存占用大小计算 http://blog.csdn.net/hackbuteer1/article/details/7883531 C++虚函数及虚函数表解析 http://www.perfect-is-shit.com/cpp-vtable.html   声明: 本文内容由自互联网资源(见参考资料)、个人的一些 C++ 学习感悟、个人实践整理而成。

C++ 虚函数表解析 http://blog.csdn.net/haoel/article/details/1948051

C++中虚函数工作原理和(虚)继承类的内存占用大小计算 http://blog.csdn.net/hackbuteer1/article/details/7883531

C++虚函数及虚函数表解析 http://www.perfect-is-shit.com/cpp-vtable.html

 

声明:

本文内容由自互联网资源(见参考资料)、个人的一些 C++ 学习感悟、个人实践整理而成。文章仅以技术学习和交流为目的。如果您发现了文中的错误,或者您有的不同的见解,可以给我留言或者给我发邮件,我们共同探讨。如果您觉得我的文章侵犯到您的权益,请联系我(chinajiezhang@gmail.com),以便我做相应的处理。最后,如需转载,可不必标明出处。但一定要全文转载,保证参考链接的完整性,这是对别人写作的基本尊重。谢谢合作!

写博缘由:

  • 对C++多态内部机制了解的渴望;
  • 眼过千遍,不如手过一遍;
  • 整理成文,帮助自己记忆;不求帮到他人,只求不会误导。

一、背景知识(一些基本概念)

虚函数(Virtual Function):在基类中声明为 virtual 并在一个或多个派生类中被重新定义的成员函数。

纯虚函数(Pure Virtual Function):基类中没有实现体的虚函数称为纯虚函数(有纯虚函数的基类称为虚基类)。 C++ “虚函数”的存在是为了实现面向对象中的“多态”,即父类类别的指针(或者引用)指向其子类的实例,然后通过父类的指针(或者引用)调用实际子类的成员函数。通过动态赋值,实现调用不同的子类的成员函数(动态绑定)。正是因为这种机制,把析构函数声明为“虚函数”可以防止在内存泄露。

实例:

#include <iostream>
using namespace std;

class base_class
{
public:
    base_class()
    {
    }
    virtual ~base_class()
    {
    }

    int normal_func()
    {
        cout << "This is  base_class's normal_func()" << endl;
        return 0;
    }
    virtual int virtual_fuc()
    {
        cout << "This is  base_class's virtual_fuc()" << endl;
        return 0;
    }

};

class drived_class1 : public base_class
{
public:
    drived_class1()
    {
    }
    virtual ~drived_class1()
    {
    }

    int normal_func()
    {
        cout << "This is  drived_class1's normal_func()" << endl;
        return 0;
    }
    virtual int virtual_fuc()
    {
        cout << "This is  drived_class1's virtual_fuc()" << endl;
        return 0;
    }
};

class drived_class2 : public base_class
{
public:
    drived_class2()
    {
    }
    virtual ~drived_class2()
    {
    }

    int normal_func()
    {
        cout << "This is  drived_class2's normal_func()" << endl;
        return 0;
    }
    virtual int virtual_fuc()
    {
        cout << "This is  drived_class2's virtual_fuc()" << endl;
        return 0;
    }
};

int main()
{
    base_class * pbc = NULL;
    base_class bc;
    drived_class1 dc1;
    drived_class2 dc2;

    pbc = &bc;
    pbc->normal_func();
    pbc->virtual_fuc();

    pbc = &dc1;
    pbc->normal_func();
    pbc->virtual_fuc();

    pbc = &dc2;
    pbc->normal_func();
    pbc->virtual_fuc();
    return 0;

}

输出结果:

This is  base_class's normal_func()
This is  base_class's virtual_fuc()
This is  base_class's normal_func()
This is  drived_class1's virtual_fuc()
This is  base_class's normal_func()
This is  drived_class2's virtual_fuc()

假如将 base_class 类中的 virtual_fuc() 写成下面这样(纯虚函数,虚基类):

// 无实现体
virtual int virtual_fuc() = 0;

那么 virtual_fuc() 是一个纯虚函数,base_class 就是一个虚基类:不能实例化(即不能用它来定义对象),只能声明指针或者引用。读者可以自行测试,这里不再给出实例。

虚函数表(Virtual Table,V-Table):使用 V-Table 实现 C++ 的多态。在这个表中,主要是一个类的虚函数的地址表,这张表解决了继承、覆盖的问题,保证其真实反应实际的函数。这样,在有虚函数的类的实例中分配了指向这个表的指针的内存,所以,当用父类的指针来操作一个子类的时候,这张虚函数表就显得尤为重要了,它就像一个地图一样,指明了实际所应该调用的函数。

编译器应该保证虚函数表的指针存在于对象实例中最前面的位置(这是为了保证取到虚函数表的有最高的性能——如果有多层继承或是多重继承的情况下)。

这意味着可以通过对象实例的地址得到这张虚函数表,然后就可以遍历其中函数指针,并调用相应的函数。

二、无继承时的虚函数表

#include <iostream>
using namespace std;

class base_class
{
public:
    virtual void v_func1()
    {
        cout << "This is base_class's v_func1()" << endl;
    }
    virtual void v_func2()
    {
        cout << "This is base_class's v_func2()" << endl;
    }
    virtual void v_func3()
    {
        cout << "This is base_class's v_func3()" << endl;
    }
};

int main()
{
    // 查看 base_class 的虚函数表
    base_class bc;
    cout << "base_class 的虚函数表首地址为:" << (int*)&bc << endl; // 虚函数表地址存在对象的前四个字节
    cout << "base_class 的 第一个函数首地址:" << (int*)*(int*)&bc+0 << endl; // 指针运算看不懂?没关系,一会解释给你听
    cout << "base_class 的 第二个函数首地址:" << (int*)*(int*)&bc+1 << endl;
    cout << "base_class 的 第三个函数首地址:" << (int*)*(int*)&bc+2 << endl;
    cout << "base_class 的 结束标志: " << *((int*)*(int*)&bc+3) << endl;

    // 通过函数指针调用函数,验证正确性
    typedef void(*func_pointer)(void);
    func_pointer fp = NULL;
    fp = (func_pointer)*((int*)*(int*)&bc+0); // v_func1()
    fp();
    fp = (func_pointer)*((int*)*(int*)&bc+1); // v_func2()
    fp();
    fp = (func_pointer)*((int*)*(int*)&bc+2); // v_func3()
    fp();
    return 0;
}

输出结果:

base_class 的虚函数表首地址为:0x22ff0c
base_class 的 第一个函数首地址:0x472c98
base_class 的 第二个函数首地址:0x472c9c
base_class 的 第三个函数首地址:0x472ca0
base_class 的虚函数表结束标志: 0
This is base_class's v_func1()
This is base_class's v_func2()
This is base_class's v_func3()

简单的解释一下代码中的指针转换:

  • &bc:获得 bc 对象的地址。
  • (int)&bc: 类型转换,获得虚函数表的首地址。这里使用 int 的原因是函数指针的大小的 4byte,使用 int 可以使得他们每次的偏移量保持一致(sizeof(int) = 4,32-bit机器)。
  • (int)&bc:解指针引用,获得虚函数表。
  • (int)(int*)&bc+0:和上面相同的类型转换,获得虚函数表的第一个虚函数地址。
  • (int)(int*)&bc+1:同上,获得第二个函数地址。
  • (int)(int*)&bc+2:同上,获得第三个函数地址。
  • ((int)(int)&bc+3):获得虚函数表的结束标志,所以这里我解引用了。和我们使用链表的情况是一样的,虚函数表当然也需要一个结束标志。
  • typedef void(*func_pointer)(void):定义一个函数指针,参数和返回值都是 void。

对于指针的转换,我就解释这么多了。下面的文章,我不再做解释,相信大家可以举一反三。如果你觉得很费解的话,我不建议继续去看这篇文章了,建议你去补一补基础(《C和指针》是一本很好的选择哦!)。 通过上面的例子的尝试和输出结果,我们可以得出下面的布局图示:

三、单一继承下的虚函数表

3.1 子类没有重写父类的虚函数

陈皓文章中用了“覆盖”一词,我觉得太合理,但是我又找不到更合理的词语,所以就用一个句子代替了。^-^)

#include <iostream>
using namespace std;

class base_class
{
public:
    virtual void v_func1()
    {
        cout << "This is base_class's v_func1()" << endl;
    }
    virtual void v_func2()
    {
        cout << "This is base_class's v_func2()" << endl;
    }
    virtual void v_func3()
    {
        cout << "This is base_class's v_func3()" << endl;
    }
};
class dev_class : public base_class
{
public:
    virtual void v_func4()
    {
        cout << "This is dev_class's v_func4()" << endl;
    }
    virtual void v_func5()
    {
        cout << "This is dev_class's v_func5()" << endl;
    }
};

int main()
{
    // 查看 dev_class 的虚函数表
    dev_class dc;
    cout << "dev_class 的虚函数表首地址为:" << (int*)&dc << endl;
    cout << "dev_class 的 第一个函数首地址:" << (int*)*(int*)&dc+0 << endl;
    cout << "dev_class 的 第二个函数首地址:" << (int*)*(int*)&dc+1 << endl;
    cout << "dev_class 的 第三个函数首地址:" << (int*)*(int*)&dc+2 << endl;
    cout << "dev_class 的 第四个函数首地址:" << (int*)*(int*)&dc+3 << endl;
    cout << "dev_class 的 第五个函数首地址:" << (int*)*(int*)&dc+4 << endl;
    cout << "dev_class 的虚函数表结束标志: " << *((int*)*(int*)&dc+5) << endl;
    // 通过函数指针调用函数,验证正确性
    typedef void(*func_pointer)(void);
    func_pointer fp = NULL;
    for (int i=0; i<5; i++) {
        fp = (func_pointer)*((int*)*(int*)&dc+i);
        fp();
    }
    return 0;
}

输出结果:

dev_class 的虚函数表首地址为:0x22ff0c
dev_class 的 第一个函数首地址:0x472d10
dev_class 的 第二个函数首地址:0x472d14
dev_class 的 第三个函数首地址:0x472d18
dev_class 的 第四个函数首地址:0x472d1c
dev_class 的 第五个函数首地址:0x472d20
dev_class 的虚函数表结束标志: 0
This is base_class's v_func1()
This is base_class's v_func2()
This is base_class's v_func3()
This is dev_class's v_func4()
This is dev_class's v_func5()

通过上面的例子的尝试和输出结果,我们可以得出下面的布局图示:

可以看出,v-table中虚函数是顺序存放的,先基类后派生类。

3.2 子类有重写父类的虚函数

#include <iostream>
using namespace std;

class base_class
{
public:
    virtual void v_func1()
    {
        cout << "This is base_class's v_func1()" << endl;
    }
    virtual void v_func2()
    {
        cout << "This is base_class's v_func2()" << endl;
    }
    virtual void v_func3()
    {
        cout << "This is base_class's v_func3()" << endl;
    }
};
class dev_class : public base_class
{
public:
    virtual void v_func1()
    {
        cout << "This is dev_class's v_func1()" << endl;
    }
    virtual void v_func2()
    {
        cout << "This is dev_class's v_func2()" << endl;
    }
    virtual void v_func4()
    {
        cout << "This is dev_class's v_func4()" << endl;
    }
    virtual void v_func5()
    {
        cout << "This is dev_class's v_func5()" << endl;
    }
};

int main()
{
    // 查看 dev_class 的虚函数表
    dev_class dc;
    cout << "dev_class 的虚函数表首地址为:" << (int*)&dc << endl;
    cout << "dev_class 的 第一个函数首地址:" << (int*)*(int*)&dc+0 << endl;
    cout << "dev_class 的 第二个函数首地址:" << (int*)*(int*)&dc+1 << endl;
    cout << "dev_class 的 第三个函数首地址:" << (int*)*(int*)&dc+2 << endl;
    cout << "dev_class 的 第四个函数首地址:" << (int*)*(int*)&dc+3 << endl;
    cout << "dev_class 的 第五个函数首地址:" << (int*)*(int*)&dc+4 << endl;
    cout << "dev_class 的虚函数表结束标志: " << *((int*)*(int*)&dc+5) << endl;
    // 通过函数指针调用函数,验证正确性
    typedef void(*func_pointer)(void);
    func_pointer fp = NULL;
    for (int i=0; i<5; i++) {
        fp = (func_pointer)*((int*)*(int*)&dc+i);
        fp();
    }
    return 0;
}

输出结果:

dev_class 的虚函数表首地址为:0x22ff0c
dev_class 的 第一个函数首地址:0x472d50
dev_class 的 第二个函数首地址:0x472d54
dev_class 的 第三个函数首地址:0x472d58
dev_class 的 第四个函数首地址:0x472d5c
dev_class 的 第五个函数首地址:0x472d60
dev_class 的虚函数表结束标志: 0
This is dev_class's v_func1()
This is dev_class's v_func2()
This is base_class's v_func3()
This is dev_class's v_func4()
This is dev_class's v_func5()

通过上面的例子的尝试和输出结果,我们可以得出下面的布局图示:

可以看出:当派生类中 dev_class 中重写了父类 base_class 的前两个虚函数(v_func1,v_func2)之后,使用派生类的虚函数指针代替了父类的虚函数。未重写的父类虚函数位置没有发生变化。

不知道看到这里,你心里有没有一个小问题?至少我是有的。看下面的代码:

virtual void v_func1()
{
    base_class::v_func1();
    cout << "This is dev_class's v_func1()" << endl;
}

既然派生类的虚函数表中用 dev_class::v_func1 指针代替了 base_class::v_func1,假如我显示的调用

base_class::v_func1,会不会有错呢?答案是没错的,可以正确的调用!不是覆盖了吗?dev_class 已经不知道 base_class::v_func1 的指针了,怎么调用的呢?

如果你想知道原因,请关注这两个帖子:

四、多重继承下的虚函数表

4.1子类没有重写父类的虚函数

#include <iostream>
using namespace std;

class base_class1
{
public:
    virtual void bc1_func1()
    {
        cout << "This is bc1_func1's v_func1()" << endl;
    }
};

class base_class2
{
public:
    virtual void bc2_func1()
    {
        cout << "This is bc2_func1's v_func1()" << endl;
    }
};

class dev_class : public base_class1, public base_class2
{
public:
    virtual void dc_func1()
    {
        cout << "This is dc_func1's dc_func1()" << endl;
    }
};

int main()
{
    dev_class dc;
    cout << "dc 的虚函数表 bc1_vt 地址:" << (int*)&dc << endl;
    cout << "dc 的虚函数表 bc1_vt 第一个虚函数地址:" << (int*)*(int*)&dc+0 << endl;
    cout << "dc 的虚函数表 bc1_vt 第二个虚函数地址:" << (int*)*(int*)&dc+1 << endl;
    cout << "dc 的虚函数表 bc1_vt 结束标志:" << *((int*)*(int*)&dc+2) << endl;
    cout << "dc 的虚函数表 bc2_vt 地址:" << (int*)&dc+1 << endl;
    cout << "dc 的虚函数表 bc2_vt 第一个虚函数首地址::" << (int*)*((int*)&dc+1)+0 << endl;
    cout << "dc 的虚函数表 bc2_vt 结束标志:" << *((int*)*((int*)&dc+1)+1) << endl;
    // 通过函数指针调用函数,验证正确性
    typedef void(*func_pointer)(void);
    func_pointer fp = NULL;
    // bc1_vt
    fp = (func_pointer)*((int*)*(int*)&dc+0);
    fp();
    fp = (func_pointer)*((int*)*(int*)&dc+1);
    fp();
    // bc2_vt
    fp = (func_pointer)*(((int*)*((int*)&dc+1)+0));
    fp();
    return 0;
}

输出结果:

dc 的虚函数表 bc1_vt 地址:0x22ff08
dc 的虚函数表 bc1_vt 第一个虚函数地址:0x472d38
dc 的虚函数表 bc1_vt 第二个虚函数地址:0x472d3c
dc 的虚函数表 bc1_vt 结束标志:-4
dc 的虚函数表 bc2_vt 地址:0x22ff0c
dc 的虚函数表 bc2_vt 第一个虚函数首地址::0x472d48
dc 的虚函数表 bc2_vt 结束标志:0
This is bc1_func1's v_func1()
This is dc_func1's dc_func1()
This is bc2_func1's v_func1()

通过上面的例子的尝试和输出结果,我们可以得出下面的布局图示:

可以看出:多重继承的情况,会为每一个基类建一个虚函数表。派生类的虚函数放到第一个虚函数表的后面。

陈皓在他的文章中有这么一句话:“这个结束标志(虚函数表)的值在不同的编译器下是不同的。在WinXP+VS2003下,这个值是NULL。而在Ubuntu 7.10 + Linux 2.6.22 + GCC 4.1.3下,这个值是如果1,表示还有下一个虚函数表,如果值是0,表示是最后一个虚函数表。”我在 Windows 7 + Code::blocks 10.05 下尝试,这个值是如果是 -4,表示还有下一个虚函数表,如果是0,表示是最后一个虚函数表。我在 Windows 7 + vs2010 下尝试,两个值都是 0 。

4.2子类重写了父类的虚函数

#include <iostream>
using namespace std;

class base_class1
{
public:
    virtual void bc1_func1()
    {
        cout << "This is base_class1's bc1_func1()" << endl;
    }
    virtual void bc1_func2()
    {
        cout << "This is base_class1's bc1_func2()" << endl;
    }
};

class base_class2
{
public:
    virtual void bc2_func1()
    {
        cout << "This is base_class2's bc2_func1()" << endl;
    }
    virtual void bc2_func2()
    {
        cout << "This is base_class2's bc2_func2()" << endl;
    }
};

class dev_class : public base_class1, public base_class2
{
public:
    virtual void bc1_func1()
    {
        cout << "This is dev_class's bc1_func1()" << endl;
    }
    virtual void bc2_func1()
    {
        cout << "This is dev_class's bc2_func1()" << endl;
    }
    virtual void dc_func1()
    {
        cout << "This is dev_class's dc_func1()" << endl;
    }
};

int main()
{
    dev_class dc;
    cout << "dc 的虚函数表 bc1_vt 地址:" << (int*)&dc << endl;
    cout << "dc 的虚函数表 bc1_vt 第一个虚函数地址:" << (int*)*(int*)&dc+0 << endl;
    cout << "dc 的虚函数表 bc1_vt 第二个虚函数地址:" << (int*)*(int*)&dc+1 << endl;
    cout << "dc 的虚函数表 bc1_vt 第三个虚函数地址:" << (int*)*(int*)&dc+2 << endl;
    cout << "dc 的虚函数表 bc1_vt 第四个虚函数地址:" << (int*)*(int*)&dc+3 << endl;
    cout << "dc 的虚函数表 bc1_vt 结束标志:" << *((int*)*(int*)&dc+4) << endl;
    cout << "dc 的虚函数表 bc2_vt 地址:" << (int*)&dc+1 << endl;
    cout << "dc 的虚函数表 bc2_vt 第一个虚函数首地址::" << (int*)*((int*)&dc+1)+0 << endl;
    cout << "dc 的虚函数表 bc2_vt 第二个虚函数首地址::" << (int*)*((int*)&dc+1)+1 << endl;
    cout << "dc 的虚函数表 bc2_vt 结束标志:" << *((int*)*((int*)&dc+1)+2) << endl;
    // 通过函数指针调用函数,验证正确性
    typedef void(*func_pointer)(void);
    func_pointer fp = NULL;
    // bc1_vt
    fp = (func_pointer)*((int*)*(int*)&dc+0);
    fp();
    fp = (func_pointer)*((int*)*(int*)&dc+1);
    fp();
    fp = (func_pointer)*((int*)*(int*)&dc+2);
    fp();
    fp = (func_pointer)*((int*)*(int*)&dc+3);
    fp();
    // bc2_vt
    fp = (func_pointer)*(((int*)*((int*)&dc+1)+0));
    fp();
    fp = (func_pointer)*(((int*)*((int*)&dc+1)+1));
    fp();
    return 0;
}

输出结果:

dc 的虚函数表 bc1_vt 地址:0x22ff08
dc 的虚函数表 bc1_vt 第一个虚函数地址:0x472e28
dc 的虚函数表 bc1_vt 第二个虚函数地址:0x472e2c
dc 的虚函数表 bc1_vt 第三个虚函数地址:0x472e30
dc 的虚函数表 bc1_vt 第四个虚函数地址:0x472e34
dc 的虚函数表 bc1_vt 结束标志:-4
dc 的虚函数表 bc2_vt 地址:0x22ff0c
dc 的虚函数表 bc2_vt 第一个虚函数首地址::0x472e40
dc 的虚函数表 bc2_vt 第一个虚函数首地址::0x472e44
dc 的虚函数表 bc2_vt 结束标志:0
This is dev_class's bc1_func1()
This is base_class1's bc1_func2()
This is dev_class's bc2_func1()
This is dev_class's dc_func1()
This is dev_class's bc2_func1()
This is base_class2's bc2_func2()

通过上面的例子的尝试和输出结果,我们可以得出下面的布局图示:

是不是感觉很乱?其实一点都不乱!就是两个单继承而已。把多余的部分(派生类的虚函数)增加到第一个虚函数表的最后,CB(Code::Blocks)是这样实现的。我试了一下,vs2010不是这样实现的,读者可以自己尝试一下。本文只针对 CB 来探讨。

有人觉得多重继承不好理解。我想如果你明白了它的虚函数表是怎么样的,也就没什么不好理解了吧。

也许还有人会说,不同的编译器实现方式是不一样的,我去研究某一种编译器的实现有什么意义呢?我个人理解是这样的:

  • 实现方式是不一样的,但是它们的实现结果是一样的(多态)。
  • 无论你了解虚函数表或者不了解虚函数表,我相信你都很少会用到它。但是当你了解了它的实现机制之后,你再去看多态,再去写虚函数的时候[作为你一个coder],相信你的感觉是不一样的。你会感觉很透彻,不会有丝毫的犹豫。
  • 学习编译器这种处理问题的方式(思想),这才是最重要的。[好像扯远了,^-^]。

如果你了解了虚函数表之后,可以通过虚函数表直接访问类的方法,这种访问是不受成员的访问权限限制的(private,protected)。这样做是很危险的,但是确实是可以这样做的。这也是C++为什么很危险的语言的一个原因……

写到这里,文章也就基本结束了。作为读者的你,看完之后,你不是产生了许多其他的问题呢?作为笔者的我,有了新几个问题[我这人问题特别多。^-^]比如:

  • 访问权限是怎么实现的?编译器怎么知道哪些函数是public,哪些是protected?
  • 虚函数调用是通过虚函数表实现的,那么非虚成员函数存放在哪里?是怎么实现的呢?
  • 类的成员存放在什么位置?怎么继承的呢?[这是对象布局问题,=.=]

你知道的越多,你感觉你知道的越少。推荐大家一本书吧,《深度探索C++对象模型》(英文名字是《Inside to C++ Object Model》),看完你会明白很多。


感谢阅读,下面列出参考资料[顺便给大家推荐一下陈皓的博客吧:http://coolshell.cn/,经常去逛逛,会学到很多,至少我是这样觉得的。^-^]:

2012.07.20 update:

  • 本文只针对 Windows 7 Code::blocks 10.05 进行测试和讲解;
  • 不同的编译器实现方式可能不同,比如 VS2010 和 CB 10.05 就有些不同,感兴趣的朋友可自行测试。
相关文章
|
1月前
|
自然语言处理 编译器 Linux
|
26天前
|
设计模式 安全 数据库连接
【C++11】包装器:深入解析与实现技巧
本文深入探讨了C++中包装器的定义、实现方式及其应用。包装器通过封装底层细节,提供更简洁、易用的接口,常用于资源管理、接口封装和类型安全。文章详细介绍了使用RAII、智能指针、模板等技术实现包装器的方法,并通过多个案例分析展示了其在实际开发中的应用。最后,讨论了性能优化策略,帮助开发者编写高效、可靠的C++代码。
35 2
|
4天前
|
安全 编译器 C++
C++ `noexcept` 关键字的深入解析
`noexcept` 关键字在 C++ 中用于指示函数不会抛出异常,有助于编译器优化和提高程序的可靠性。它可以减少代码大小、提高执行效率,并增强程序的稳定性和可预测性。`noexcept` 还可以影响函数重载和模板特化的决策。使用时需谨慎,确保函数确实不会抛出异常,否则可能导致程序崩溃。通过合理使用 `noexcept`,开发者可以编写出更高效、更可靠的 C++ 代码。
11 0
|
4天前
|
存储 程序员 C++
深入解析C++中的函数指针与`typedef`的妙用
本文深入解析了C++中的函数指针及其与`typedef`的结合使用。通过图示和代码示例,详细介绍了函数指针的基本概念、声明和使用方法,并展示了如何利用`typedef`简化复杂的函数指针声明,提升代码的可读性和可维护性。
21 0
|
1月前
|
自然语言处理 编译器 Linux
告别头文件,编译效率提升 42%!C++ Modules 实战解析 | 干货推荐
本文中,阿里云智能集团开发工程师李泽政以 Alinux 为操作环境,讲解模块相比传统头文件有哪些优势,并通过若干个例子,学习如何组织一个 C++ 模块工程并使用模块封装第三方库或是改造现有的项目。
|
2月前
|
安全 C语言 C++
【C++篇】探寻C++ STL之美:从string类的基础到高级操作的全面解析
【C++篇】探寻C++ STL之美:从string类的基础到高级操作的全面解析
45 4
|
2月前
|
存储 编译器 C++
【C++篇】揭开 C++ STL list 容器的神秘面纱:从底层设计到高效应用的全景解析(附源码)
【C++篇】揭开 C++ STL list 容器的神秘面纱:从底层设计到高效应用的全景解析(附源码)
73 2
|
1月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
71 2
|
2月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
76 0
|
2月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
62 0

推荐镜像

更多
下一篇
DataWorks