概率论03 条件概率

简介: 作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!   在概率公理中,我们建立了“概率测度”的概念,并使用“面积”来类比。这是对概率的第一步探索。

作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!

 

在概率公理中,我们建立了“概率测度”的概念,并使用“面积”来类比。这是对概率的第一步探索。为了让概率这个工具更加有用,数学家进一步构筑了“条件概率”,来深入探索概率中包含的数学结构。我们可以考虑生活中常见的一个估计:

三个公司开发一块地。A占地20%,B占地30%,C占地50%。三个公司规划的绿地占比不同:A土地中40%规划为绿地,B土地中的30%规划为绿地,C土地中的10%规划为绿地。我想选择绿地最大的一个小区,应该选择哪一个呢?我们可以画图出来:

显然,我们需要比较的是A:0.2x0.4,B:0.3x0.1,C:0.5x0.1。这是我们常见的一种情形:整个地区分块,每块有一定的比例。再进一步考虑每一块内部的相对比例。我们要了解的“条件概率”这一概念,就对应这里的“相对比例”。

 

条件概率:何弃疗

上面公司的不同造成了绿地占比的不同,也就是说,公司这一因素影响了绿地占比。条件概率同样反映了其它因素对事件概率的影响。

比如说,患者康复有一个概率。在接受治疗和放弃治疗的两种条件下,患者康复的概率也不同。下面是患者的统计结果。

  治疗(T) 弃疗(NT) 总数
康复(R) 300 100 400
未康复(NR) 200 400 600
总数 500 500 1000

 

所有的1000人中,共有400人康复,总体的康复概率为[$P(R) = 400/1000 = 0.4$]。另一方面,在接受治疗一列,总共有500人。在这500人种,有300人康复。因此,在接受治疗的条件下,康复的概率变成[$ 300/500 = 0.6$]。这个概率值高于总体的康复概率。而放弃治疗的条件下,康复的概率为[$ 100/500 = 0.2$],康复的概率较低 (可恶,为何放弃治疗)。可见,康复率受到是否接受治疗这一条件的影响。

 

为了表达某一事件(治疗)对另一个事件(康复)概率的影响,概率论中引入条件概率的概念。条件概率记为[$P(R|T) = 300/500 = 0.6$]。R和T是两个事件,即治疗和康复。在治疗(T)的条件下,患者康复(R)的概率为0.6。

(对应文章开始的例子,每个公司的绿地占比为条件概率。比如[$P(绿地|A公司) = 40%$])

 

不要放弃治疗啊!

 

条件概率的定义

上面给出了条件概率的粗糙概念。但我们已经了解了概率的公理化体系,因此可以基于公理化体系,更严格的定义条件概率。

定义 如果A和B是两个事件,且[$P(B) \ne 0$]。那么B条件下,A的条件概率为

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

这是一个非常直观的概念。回到绿地的例子,这里的意思就是说,我们想要知道A公司的绿地占比[$P(绿地 | A公司)$]的话,可以用A公司占据的绿地面积[$P(A公司 \cap 绿地)$],除以A公司占据土地的面积[$P(A公司)$]。

 

在上面定义条件概率时,我们使用了概率[$P(A \cap B)$],即A和B同时发生的概率。从频率的角度上来看,是同时符合A和B的样本数除以[$\Omega$]中的样本总数。比如上面治疗和康复的例子,[$P(R \cap T) = 300/1000$]。但[$P(A|B)$]的隐含假设是,B确定要发生,即病人确定康复。符合这样条件的样本只有500个,而不是整个[$\Omega$]的1000个样本。

也就是说,当确定B发生时,样本空间不再是[$\Omega$],而是缩小成B。我们在B样本空间中寻找A发生的概率。从上面的图中看,就是[$A \cap B$]的面积(概率测度),除以B占据的面积(概率测度),也就是我们条件概率的定义。

 

条件概率的相关推论

条件概率有一些很有用的推论:

推论1 A和B为两个事件,且[$P(B) \ne 0$]。那么

$$P(A \cap B) = P(A|B)P(B)$$

这个只是将上面的定义中的等式两侧乘以P(B)。从而允许我们从条件概率,来推导两个事件同时发生的概率。 

 

假设卫星观察到,一个地区某一天有云的概率为[$P(Cloud) = 0.2$]。该地区的地面观测站发现,有云的条件下,当天下雨的为0.5。这是一个条件概率,即[$P(Rain | Cloud) = 0.5$]。那么既下雨又有云的概率为

$$P(Cloud \cap Rain) = P(Cloud) \times P(Rain | Cloud) = 0.2 \times 0.5 = 0.1$$

另一个推论,用于通过已知的条件概率,来计算一个事件的概率

推论2 有事件[$B_1, B_2, ..., B_n$]。如果[$\bigcup_{i=1}^n B_i = \Omega $],两个不同事件互斥([$B_i \cap B_j = \Phi$], 如果[$i \ne j$]),且任意[$P(B_i) \gt 0$]。那么,对于任意事件A

$$P(A) = \sum\limits_{i=1}^n P(A|B_i)P(B_i)$$

这个推论的要点是不同的B事件互斥(不相交),且它们的并集是[$\Omega$]。每个元素都必须且只能进入一个[$B_i$]。在这样的条件下,我们说[$B_1, B_2, ..., B_n$]是样本空间的一个分割(partion)。 这就像二战后的德国被分区占领一样,每个[$B_i$]是一个占领区。

这正是对所有情况“分块”的思想。再根据每个分块中的某个事件的相对比例,乘以分块自身的权重(“块”的概率),我们可以求得该事件的绝对占比。

 

假设家庭收入分为高(H),中(M),低(L)三类,高收入家庭占20%,中等收入家庭占65%,低收入家庭占15%。如果高收入家庭的拥有汽车的概率为0.8,中等收入家庭的拥有汽车的概率为0.5,低收入家庭的拥有汽车的概率为0.2。那么任意一个家庭的拥车概率为:

$$P(C) = P(C|H)P(H) + P(C|M)P(M) + P(C|L)P(L) = 0.8 \times 0.2 + 0.5 \times 0.65 + 0.2 \times 0.15 = 0.515$$

 

 

 

独立事件

两个事件可以是相互独立的 (independent)。直观的讲,如果事件A发生与否不会影响事件B的概率,那么A与B独立。

我们尝试将这一个概念用条件概率来表达:将B看作A的条件,那么A的条件概率不受B的影响,即:

定义 两个事件A和B,[$P(A) \ne 0$],[$P(B) \ne 0$]。如果[$P(A|B) = P(A)$],或者[$P(B|A) = P(B)$],那么事件A和B是独立事件。

某一条件下的“相对占比”等于任意条件下的“绝对占比”?这是怎么一种情况呢?

我们可以想像这样的情况。水中氢和氧的组成比为2:1 (任意条件下)。而水的三种态(水蒸汽、液态水、冰)中的氢和氧组成也是2:1。也就是说,水的态这一条件对氢氧组成无影响,两者独立。

 

根据独立事件和条件概率的定义可以推知,如果

$$P(A \cap B) = P(A)P(B)$$

那么A和B独立。

 

注意,独立事件和互斥事件不同。独立事件是指A发生的概率不影响B。对于互斥事件来说,如果A发生,那么B必然不发生,A的发生影响到了B,所以不是独立事件。比如下雨和不下雨可以看做互斥事件,而下雨和骰子为1可以看做独立事件。

 

事件[$A_1, A_2, ..., A_n$]被称为相互独立(mutually independent),如果对于任意子集[$A_{i_1},...,A_{i_m}$]都有 

$$P(A_{i_1} \cap ... \cap A_{i_m}) = P(A_{i_1})...P(A_{i_m})$$

 

贝叶斯法则

根据上面的定律,我们可以推导出贝叶斯法则(Bayes' Rule)。

贝叶斯法则 如果A和[$B_1, B_2, ..., B_n$]为事件,[$B_i$]互斥,[$\bigcup_{i=1}^n B_i = \Omega$], 且[$P(B_i) \gt 0$]。那么

$$P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum\limits_{i=1}^n P(A|B_i)P(B_i)}$$

这个法则是一种求条件概率的方式。 

 

我们使用文章开头的治疗与康复的例子。我们已知治疗和弃疗的条件概率为[$P(R|T) = 0.6$],[$P(R/NT) = 0.2$],而[$P(T) = P(NT) = 0.5$]。

治疗与弃疗互斥(不可能同时治疗又弃疗),且其并集构成全集(要么治疗,要么弃疗,没有其它的可能)。根据贝叶斯法则,

$$P(T|R) = \frac{P(R|T)P(T)}{P(R|T)P(T) + P(R|NT)P(NT)} = \frac{0.6 \times 0.5}{0.6 \times 0.5 + 0.2 \times 0.5} = 0.75$$

即一个康复的人,用药的概率。这与我们在表格中看到的比例相符(400个康复的人中,300个人用药)。

 

贝叶斯法则常用于求一些比较难以直接获得的条件概率。此外,在机器学习中,也有贝叶斯算法的应用。

 

练习,编写一个Python函数,用于实现贝叶斯法则的功能。并计算下面的概率:

已知专家预报下雨时,下雨的概率为0.8; 专家预报不下雨时,下雨的概率为0.2。根据以往的经验,专家一年中有30天预报下雨,剩下的天里预报不下雨。问,如果下雨,专家预报的是不下雨的概率为多少?

 

总结

条件概率

独立事件

贝叶斯法则

 

欢迎继续阅读“数据科学”系列文章

 

目录
相关文章
|
6月前
|
机器学习/深度学习 自然语言处理 算法
多项式朴素贝叶斯分类器
本文介绍了多项式朴素贝叶斯分类器的工作原理,它基于多项分布而非高斯分布来估计类别概率。在文本分类等多类别问题中,该算法尤其适用。文章详细阐述了多项分布的概念,并通过实例解释了如何估计分布参数,包括使用平滑技巧处理未出现的特征。在分类过程中,使用对数空间计算以避免数值下溢。最后,文章通过scikit-learn展示了如何实际操作多项式朴素贝叶斯分类器。
61 2
【概率论基础】Probability | 数学性概率 | 统计性概率 | 几何概率 | 概率论三大公理
【概率论基础】Probability | 数学性概率 | 统计性概率 | 几何概率 | 概率论三大公理
113 0
|
存储 大数据 数据挖掘
浅析概率论的应用
浅析概率论的应用 【摘 要】在学习概率论与数理统计过程中,我们可以发现随机现象存在于我们日常生活的方方面面和科学技术的各个领域。并且概率论与数理统计不仅是一门十分重要的大学数学基础课, 还是唯一一门研究随机现象规律的学科,它指导人们从事物表
115 0
|
资源调度 数据处理
第8章 概率统计——8.1 产生随机变量
第8章 概率统计——8.1 产生随机变量
概率论|贝叶斯公式及其推论的理解和运用
概率论|贝叶斯公式及其推论的理解和运用
167 0
概率论笔记(二)概率分布
概率论笔记(二)概率分布
96 0
|
人工智能 开发者
马尔科夫不等式 | 学习笔记
快速学习马尔科夫不等式
马尔科夫不等式 | 学习笔记
|
机器学习/深度学习
PRML 1.1 多项式曲线拟合
PRML 1.1 多项式曲线拟合
PRML 1.1 多项式曲线拟合
|
人工智能 开发者
条件概率 | 学习笔记
快速学习条件概率
条件概率 | 学习笔记
|
机器学习/深度学习
贝叶斯公式
贝叶斯公式
227 0
贝叶斯公式