MySQL · 最佳实践 · 分区表基本类型

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介:

MySQL分区表概述

随着MySQL越来越流行,Mysql里面的保存的数据也越来越大。在日常的工作中,我们经常遇到一张表里面保存了上亿甚至过十亿的记录。这些表里面保存了大量的历史记录。 对于这些历史数据的清理是一个非常头疼事情,由于所有的数据都一个普通的表里。所以只能是启用一个或多个带where条件的delete语句去删除(一般where条件是时间)。 这对数据库的造成了很大压力。即使我们把这些删除了,但底层的数据文件并没有变小。面对这类问题,最有效的方法就是在使用分区表。最常见的分区方法就是按照时间进行分区。 分区一个最大的优点就是可以非常高效的进行历史数据的清理。

分区类型

目前MySQL支持范围分区(RANGE),列表分区(LIST),哈希分区(HASH)以及KEY分区四种。下面我们逐一介绍每种分区:

RANGE分区

基于属于一个给定连续区间的列值,把多行分配给分区。最常见的是基于时间字段. 基于分区的列最好是整型,如果日期型的可以使用函数转换为整型。本例中使用to_days函数

CREATE TABLE my_range_datetime(
 id INT,
 hiredate DATETIME
) 
PARTITION BY RANGE (TO_DAYS(hiredate) ) (
 PARTITION p1 VALUES LESS THAN ( TO_DAYS('20171202') ),
 PARTITION p2 VALUES LESS THAN ( TO_DAYS('20171203') ),
 PARTITION p3 VALUES LESS THAN ( TO_DAYS('20171204') ),
 PARTITION p4 VALUES LESS THAN ( TO_DAYS('20171205') ),
 PARTITION p5 VALUES LESS THAN ( TO_DAYS('20171206') ),
 PARTITION p6 VALUES LESS THAN ( TO_DAYS('20171207') ),
 PARTITION p7 VALUES LESS THAN ( TO_DAYS('20171208') ),
 PARTITION p8 VALUES LESS THAN ( TO_DAYS('20171209') ),
 PARTITION p9 VALUES LESS THAN ( TO_DAYS('20171210') ),
 PARTITION p10 VALUES LESS THAN ( TO_DAYS('20171211') ),
 PARTITION p11 VALUES LESS THAN (MAXVALUE) 
); 

p11是一个默认分区,所有大于20171211的记录都会在这个分区。MAXVALUE是一个无穷大的值。p11是一个可选分区。如果在定义表的没有指定的这个分区,当我们插入大于20171211的数据的时候,会收到一个错误。

我们在执行查询的时候,必须带上分区字段。这样可以使用分区剪裁功能

mysql> insert into my_range_datetime select * from test; 
Query OK, 1000000 rows affected (8.15 sec)
Records: 1000000 Duplicates: 0 Warnings: 0

mysql> explain partitions select * from my_range_datetime where hiredate >= '20171207124503' and hiredate<='20171210111230'; 
+----+-------------+-------------------+--------------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------------------+--------------+------+---------------+------+---------+------+--------+-------------+
| 1 | SIMPLE | my_range_datetime | p7,p8,p9,p10 | ALL | NULL | NULL | NULL | NULL | 400061 | Using where |
+----+-------------+-------------------+--------------+------+---------------+------+---------+------+--------+-------------+
1 row in set (0.03 sec) 

注意执行计划中的partitions的内容,只查询了p7,p8,p9,p10三个分区,由此来看,使用to_days函数确实可以实现分区裁剪。

上面是基于datetime的,如果是timestamp类型,我们遇到上面问题呢?

事实上,MySQL提供了一种基于UNIX_TIMESTAMP函数的RANGE分区方案,而且,只能使用UNIX_TIMESTAMP函数,如果使用其它函数,譬如to_days,会报如下错误:“ERROR 1486 (HY000): Constant, random or timezone-dependent expressions in (sub)partitioning function are not allowed”。

而且官方文档中也提到“Any other expressions involving TIMESTAMP values are not permitted. (See Bug #42849.)”。

下面来测试一下基于UNIX_TIMESTAMP函数的RANGE分区方案,看其能否实现分区裁剪。

针对TIMESTAMP的分区方案

创表语句如下:

CREATE TABLE my_range_timestamp (
 id INT,
 hiredate TIMESTAMP
)
PARTITION BY RANGE ( UNIX_TIMESTAMP(hiredate) ) (
 PARTITION p1 VALUES LESS THAN ( UNIX_TIMESTAMP('2017-12-02 00:00:00') ),
 PARTITION p2 VALUES LESS THAN ( UNIX_TIMESTAMP('2017-12-03 00:00:00') ),
 PARTITION p3 VALUES LESS THAN ( UNIX_TIMESTAMP('2017-12-04 00:00:00') ),
 PARTITION p4 VALUES LESS THAN ( UNIX_TIMESTAMP('2017-12-05 00:00:00') ),
 PARTITION p5 VALUES LESS THAN ( UNIX_TIMESTAMP('2017-12-06 00:00:00') ),
 PARTITION p6 VALUES LESS THAN ( UNIX_TIMESTAMP('2017-12-07 00:00:00') ),
 PARTITION p7 VALUES LESS THAN ( UNIX_TIMESTAMP('2017-12-08 00:00:00') ),
 PARTITION p8 VALUES LESS THAN ( UNIX_TIMESTAMP('2017-12-09 00:00:00') ),
 PARTITION p9 VALUES LESS THAN ( UNIX_TIMESTAMP('2017-12-10 00:00:00') ),
 PARTITION p10 VALUES LESS THAN (UNIX_TIMESTAMP('2017-12-11 00:00:00') )
); 

插入数据并查看上述查询的执行计划

mysql> insert into my_range_timestamp select * from test;
Query OK, 1000000 rows affected (13.25 sec)
Records: 1000000 Duplicates: 0 Warnings: 0

mysql> explain partitions select * from my_range_timestamp where hiredate >= '20171207124503' and hiredate<='20171210111230';
+----+-------------+-------------------+--------------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------------------+--------------+------+---------------+------+---------+------+--------+-------------+
| 1 | SIMPLE | my_range_timestamp | p7,p8,p9,p10 | ALL | NULL | NULL | NULL | NULL | 400448 | Using where |
+----+-------------+-------------------+--------------+------+---------------+------+---------+------+--------+-------------+
1 row in set (0.00 sec) 

同样也能实现分区裁剪。

在5.7版本之前,对于DATA和DATETIME类型的列,如果要实现分区裁剪,只能使用YEAR() 和TO_DAYS()函数,在5.7版本中,又新增了TO_SECONDS()函数。

LIST 分区

LIST分区

LIST分区和RANGE分区类似,区别在于LIST是枚举值列表的集合,RANGE是连续的区间值的集合。二者在语法方面非常的相似。同样建议LIST分区列是非null列,否则插入null值如果枚举列表里面不存在null值会插入失败,这点和其它的分区不一样,RANGE分区会将其作为最小分区值存储,HASH\KEY分为会将其转换成0存储,主要LIST分区只支持整形,非整形字段需要通过函数转换成整形.

create table t_list( 
  a int(11), 
  b int(11) 
  )(partition by list (b) 
  partition p0 values in (1,3,5,7,9), 
  partition p1 values in (2,4,6,8,0) 
  ); 

Hash 分区

我们在实际工作中经常遇到像会员表的这种表。并没有明显可以分区的特征字段。但表数据有非常庞大。为了把这类的数据进行分区打散mysql 提供了hash分区。基于给定的分区个数,将数据分配到不同的分区,HASH分区只能针对整数进行HASH,对于非整形的字段只能通过表达式将其转换成整数。表达式可以是mysql中任意有效的函数或者表达式,对于非整形的HASH往表插入数据的过程中会多一步表达式的计算操作,所以不建议使用复杂的表达式这样会影响性能。

Hash分区表的基本语句如下:

CREATE TABLE my_member (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 created DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY HASH(id)
PARTITIONS 4; 

注意:

  1. HASH分区可以不用指定PARTITIONS子句,如上文中的PARTITIONS 4,则默认分区数为1。
  2. 不允许只写PARTITIONS,而不指定分区数。
  3. 同RANGE分区和LIST分区一样,PARTITION BY HASH (expr)子句中的expr返回的必须是整数值。
  4. HASH分区的底层实现其实是基于MOD函数。譬如,对于下表

CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE) PARTITION BY HASH( YEAR(col3) ) PARTITIONS 4; 如果你要插入一个col3为“2017-09-15”的记录,则分区的选择是根据以下值决定的:

MOD(YEAR(‘2017-09-01’),4) = MOD(2017,4) = 1

LINEAR HASH分区

LINEAR HASH分区是HASH分区的一种特殊类型,与HASH分区是基于MOD函数不同的是,它基于的是另外一种算法。

格式如下:

CREATE TABLE my_members (
 id INT NOT NULL,
 fname VARCHAR(30),
 lname VARCHAR(30),
 hired DATE NOT NULL DEFAULT '1970-01-01',
 separated DATE NOT NULL DEFAULT '9999-12-31',
 job_code INT,
 store_id INT
)
PARTITION BY LINEAR HASH( id )
PARTITIONS 4; 

说明: 它的优点是在数据量大的场景,譬如TB级,增加、删除、合并和拆分分区会更快,缺点是,相对于HASH分区,它数据分布不均匀的概率更大。

KEY分区

KEY分区其实跟HASH分区差不多,不同点如下:

  1. KEY分区允许多列,而HASH分区只允许一列。
  2. 如果在有主键或者唯一键的情况下,key中分区列可不指定,默认为主键或者唯一键,如果没有,则必须显性指定列。
  3. KEY分区对象必须为列,而不能是基于列的表达式。
  4. KEY分区和HASH分区的算法不一样,PARTITION BY HASH (expr),MOD取值的对象是expr返回的值,而PARTITION BY KEY (column_list),基于的是列的MD5值。

格式如下:

CREATE TABLE k1 (
 id INT NOT NULL PRIMARY KEY, 
 name VARCHAR(20)
)
PARTITION BY KEY()
PARTITIONS 2; 

在没有主键或者唯一键的情况下,格式如下:

CREATE TABLE tm1 (
 s1 CHAR(32)
)
PARTITION BY KEY(s1)
PARTITIONS 10; 

总结:

  1. MySQL分区中如果存在主键或唯一键,则分区列必须包含在其中。
  2. 对于原生的RANGE分区,LIST分区,HASH分区,分区对象返回的只能是整数值。
  3. 分区字段不能为NULL,要不然怎么确定分区范围呢,所以尽量NOT NULL
相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
1月前
|
关系型数据库 MySQL 数据库
MySQL数据库:基础概念、应用与最佳实践
一、引言随着互联网技术的快速发展,数据库管理系统在现代信息系统中扮演着核心角色。在众多数据库管理系统中,MySQL以其开源、稳定、可靠以及跨平台的特性受到了广泛的关注和应用。本文将详细介绍MySQL数据库的基本概念、特性、应用领域以及最佳实践,帮助读者更好地理解和应用MySQL数据库。二、MySQL
114 5
|
5月前
|
分布式计算 DataWorks 关系型数据库
实时数仓 Hologres产品使用合集之如何将MySQL数据初始化到分区表中
实时数仓Hologres的基本概念和特点:1.一站式实时数仓引擎:Hologres集成了数据仓库、在线分析处理(OLAP)和在线服务(Serving)能力于一体,适合实时数据分析和决策支持场景。2.兼容PostgreSQL协议:Hologres支持标准SQL(兼容PostgreSQL协议和语法),使得迁移和集成变得简单。3.海量数据处理能力:能够处理PB级数据的多维分析和即席查询,支持高并发低延迟查询。4.实时性:支持数据的实时写入、实时更新和实时分析,满足对数据新鲜度要求高的业务场景。5.与大数据生态集成:与MaxCompute、Flink、DataWorks等阿里云产品深度融合,提供离在线
|
3月前
|
关系型数据库 MySQL 数据库连接
绝对干货!从MySQL5.7平滑升级到MySQL8.0的最佳实践分享
绝对干货!从MySQL5.7平滑升级到MySQL8.0的最佳实践分享
165 0
|
4月前
|
存储 关系型数据库 数据库
MySQL设计规约问题之是否可以使用分区表
MySQL设计规约问题之是否可以使用分区表
|
5月前
|
存储 关系型数据库 MySQL
MySQL 分区表
MySQL 分区表
51 4
|
5月前
|
SQL 存储 关系型数据库
精通MySQL:从基础到高级应用与最佳实践
第一章:MySQL基础入门 1.1 MySQL概述 介绍MySQL的历史、发展、优势以及应用领域
|
5月前
|
分布式计算 DataWorks 关系型数据库
DataWorks产品使用合集之当需要将数据从ODPS同步到RDS,且ODPS表是二级分区表时,如何同步所有二级分区的数据
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
59 7
|
4月前
|
网络协议 关系型数据库 MySQL
【最佳实践】MySQL数据库迁移到PXC集群
借本次数据库迁移实践,再次总结一下MySQL数据库迁移到PXC的最佳操作路径。
96 0
|
5月前
|
存储 监控 关系型数据库
MySQL普通表转换为分区表实战指南
MySQL普通表转换为分区表实战指南
|
5月前
|
存储 关系型数据库 MySQL
MySQL分区表:万字详解与实践指南
MySQL分区表:万字详解与实践指南