MySQL · 实现分析 · HybridDB for MySQL 数据压缩

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介:

概述

数据压缩是一个把输入数据集按照一定的算法变换成更小的数据集的过程,解压是压缩的逆过程。如果算法对数据本身的语义了解得越多,则越可能利用语义信息进行针对性的处理,获得更好的压缩效果。数据库系统中用得比较多的压缩算法可以分为两大类:基于块的压缩、基于值的压缩。前者更为常见一些,在 OLTP 以及 OLAP 系统中都会用到,例如 InnoDB、TokuDB、HybridDB 中的块压缩;后者更多的用在 OLAP 的列存引擎内,例如 HybridDB for MySQL 中的列压缩。为了区别它们,这里把块压缩简称为压缩(Compression)、而把基于值的压缩称为编码(Encoding)。此外,在存储系统中比较常见的重复数据删除功能也可以被视为一种特殊形式的压缩。不过它不属于本文要考虑的范围。

通常来说,列存格式对压缩要更友好。大概而言,行存的数据压缩率一般为3:1(采用通用压缩算法);列存的数据压缩率为10:1(采用编码以及通用的压缩算法)。

无论是哪种形式的压缩,衡量算法本身是否适用的指标主要有:

  1. 压缩率,也就是压缩前后数据大小的比率。
  2. 吞吐量,也就是压缩和解压的速度。典型单位为 GB/s。
  3. 资源消耗,压缩解压一般是计算密集型的算法,因此主要考虑的是 CPU 消耗。

压缩

压缩算法可以说是无处不在。常见的例子如各种文件压缩工具背后的压缩算法,包括 zip、rar 等等;各种图片格式对应的压缩算法,包括 png、jpeg 等等。数据库系统中用的都是无损压缩,图片压缩则可以采用有损压缩。很多算法都属于 lz 系列,例如:lz、lzo、quicklz 等等。多年以前 Google 推出的 Snappy ,虽然压缩率不是特别出众,但是吞吐量比较大、资源消耗比较小,因此获得了广泛的应用。最近几年 Facebook 推出的 zstd 算法具有类似的特征,也获得了很多应用。zstd 的主页上有一些测试的数据,可以作为参考:

pic

编码

编码则是利用数据的语义信息进行更加有针对性的压缩。当然,很多算法也在通用的压缩算法中被采用了。常见的编码算法有:行程编码(Run Length Encoding)、字典编码(Dictionary)、差值编码(Delta)、变长整数编码(Varint)、位变换(Bit Shuffle)、前缀编码(Prefix)、异或(XOR)等等。甚至可以说有多少种数据的规律就可以发明出多少种编码算法。例如:InfoBright 就可以对一系列的数字除以最大公约数,获得更小的数字,从而达到数据压缩的目的。

产品

下面让我们来看一看典型的几个 OLAP 产品对压缩算法的支持。

Apache Kudu

Apache Kudu 是一个比较有意思的项目,它支持多副本、列存,试图解决实时分析的需求。下图是它支持的编码/压缩方法:

pic

相对其他系统而言,Kudu 编码中比较特殊的一种是 BitShuffle 编码。假设输入的是类型 T 的一个数组,该编码的算法是:先保存每个值的 MSB 位(最高位),然后下一个 bit 位,一直到最后的 LSB(最低位);然后对数据进行 LZ4 压缩。该编码适合与重复值较多的列或者列值变化不大的情况。除了上述的编码之外,Kudu 也支持通用压缩算法,例如:lz4、snappy、zlib。默认情况下,列是不压缩的。而且 Bitshuffle 编码后的列总是自动采用 lz4 压缩。

Amazon RedShift

Amazon RedShift 支持的编码/压缩算法如下:

pic

从图中可以看出,RedShift 支持 Delta、字典、RLE、Mostly、Text255 等编码。比较特别的是 Text255 和 text32k,它们适合与单词重复出现的 VARCHAR 列。实际上,它就是对每个 1MB 块中的单词创建了一个字典。字典容纳 245 个唯一的单词,数据实际存储的时候用一个字节的索引代替对应的单词。

Pivotal GPDB

Pivotal GPDB 的 Append Only Table 也支持压缩算法 。

pic

相对而言,GPDB 支持的编码和压缩种类要稍少一些。但是它允许设置算法的压缩级别以及块的大小。

总结

不同的通用压缩算法在压缩率和速度以及资源消耗之间做了不同程度的权衡,有些算法(例如 zlib)还提供了一些压缩级别的参数可供调整。针对不同的数据集合,压缩率也存在较大的区别。例如:在采用某个特定数据集的测试中,snappy 的压缩率接近 3,而 zlib 和 zstd 的压缩率大约为 4。编码算法的压缩率对数据集的类型和取值更为敏感,例如 delta 算法对整数类型,并且相邻数据之间差别较小的情况下(例如自增列),压缩比就很好。对于浮点数而言,提高要缩率更为困难,Facebook 等曾经做过一些针对性的优化。

如果想要了解数据压缩的基本背景,请参考:Data compression tutorial 。如果想要获得对列存系统的更多知识(包括列存对数据压缩的优化),则建议移步:Column store tutorial 。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
4月前
|
安全 关系型数据库 MySQL
如何将数据从MySQL同步到其他系统
【10月更文挑战第17天】如何将数据从MySQL同步到其他系统
669 0
|
13天前
|
Java 关系型数据库 MySQL
SpringBoot 通过集成 Flink CDC 来实时追踪 MySql 数据变动
通过详细的步骤和示例代码,您可以在 SpringBoot 项目中成功集成 Flink CDC,并实时追踪 MySQL 数据库的变动。
109 43
|
6天前
|
存储 SQL 关系型数据库
MySQL底层概述—4.InnoDB数据文件
本文介绍了InnoDB表空间文件结构及其组成部分,包括表空间、段、区、页和行。表空间是最高逻辑层,包含多个段;段由若干个区组成,每个区包含64个连续的页,页用于存储多条行记录。文章还详细解析了Page结构,分为通用部分(文件头与文件尾)、数据记录部分和页目录部分。此外,文中探讨了行记录格式,包括四种行格式(Redundant、Compact、Dynamic和Compressed),重点介绍了Compact行记录格式及其溢出机制。最后,文章解释了不同行格式的特点及应用场景,帮助理解InnoDB存储引擎的工作原理。
MySQL底层概述—4.InnoDB数据文件
|
4月前
|
SQL 前端开发 关系型数据库
全表数据核对 ,行数据核对,列数据核对,Mysql 8.0 实例(sample database classicmodels _No.3 )
全表数据核对 ,行数据核对,列数据核对,Mysql 8.0 实例(sample database classicmodels _No.3 )
99 0
全表数据核对 ,行数据核对,列数据核对,Mysql 8.0 实例(sample database classicmodels _No.3 )
|
4月前
|
关系型数据库 MySQL 数据库
mysql 里创建表并插入数据
【10月更文挑战第5天】
237 1
|
1月前
|
SQL 关系型数据库 MySQL
MySQL事务日志-Undo Log工作原理分析
事务的持久性是交由Redo Log来保证,原子性则是交由Undo Log来保证。如果事务中的SQL执行到一半出现错误,需要把前面已经执行过的SQL撤销以达到原子性的目的,这个过程也叫做"回滚",所以Undo Log也叫回滚日志。
MySQL事务日志-Undo Log工作原理分析
|
28天前
|
关系型数据库 MySQL 数据库
mysql慢查询每日汇报与分析
通过启用慢查询日志、提取和分析慢查询日志,可以有效识别和优化数据库中的性能瓶颈。结合适当的自动化工具和优化措施,可以显著提高MySQL数据库的性能和稳定性。希望本文的详解和示例能够为数据库管理人员提供有价值的参考,帮助实现高效的数据库管理。
40 11
|
10天前
|
缓存 NoSQL 关系型数据库
MySQL原理简介—4.深入分析Buffer Pool
本文介绍了MySQL的Buffer Pool机制,包括其作用、配置方法及内部结构。Buffer Pool是MySQL用于缓存磁盘数据页的关键组件,能显著提升数据库读写性能。默认大小为128MB,可根据服务器配置调整(如32GB内存可设为2GB)。它通过free链表管理空闲缓存页,flush链表记录脏页,并用LRU链表区分冷热数据以优化淘汰策略。此外,还探讨了多Buffer Pool实例、chunk动态调整等优化并发性能的方法,以及如何通过`show engine innodb status`查看Buffer Pool状态。关键词:MySQL内存数据更新机制。
|
2月前
|
SQL 关系型数据库 MySQL
MySQL 窗口函数详解:分析性查询的强大工具
MySQL 窗口函数从 8.0 版本开始支持,提供了一种灵活的方式处理 SQL 查询中的数据。无需分组即可对行集进行分析,常用于计算排名、累计和、移动平均值等。基本语法包括 `function_name([arguments]) OVER ([PARTITION BY columns] [ORDER BY columns] [frame_clause])`,常见函数有 `ROW_NUMBER()`, `RANK()`, `DENSE_RANK()`, `SUM()`, `AVG()` 等。窗口框架定义了计算聚合值时应包含的行。适用于复杂数据操作和分析报告。
130 11
|
2月前
|
存储 关系型数据库 MySQL
mysql怎么查询longblob类型数据的大小
通过本文的介绍,希望您能深入理解如何查询MySQL中 `LONG BLOB`类型数据的大小,并结合优化技术提升查询性能,以满足实际业务需求。
175 6