【深度学习笔记】(二)Hello, Tensorflow!

简介: 【深度学习笔记】(二)Hello, Tensorflow! 一、安装 官方安装的方式很多种,本文采用Docker方式。Docker的深入使用文案很长很多,但我们都不需要,我们的主要目的还是Tensorflow,所以只需要基本的使用即可。

【深度学习笔记】(二)Hello, Tensorflow!

一、安装

官方安装的方式很多种,本文采用Docker方式。Docker的深入使用文案很长很多,但我们都不需要,我们的主要目的还是Tensorflow,所以只需要基本的使用即可。PS:打开Tensorflow官网,,所以用Docker来安装Tensorflow就是为了绕墙而走。

1、Docker安装

首先就是点我下载安装包,打开页面看到很多开发平台的版本,选择匹配自己开发平台的包下载安装即可,安装的过程就是一直点“下一步”。。。over。

安装成功后,会有两个入口:

这里写图片描述

第一个既然看不清名称就不用官他,也可以看得清也不要管他,因为我们只需要用第二个:Kitmatic,我们仅用用Kitmatic来操作Docker来提供Tensorfow的,不需要要学习第一个命令行的操作方式。

2、Kitmatic安装Tensorflow环境

点击第1步中的第二个图标启动Kitmatic;点击左上角的”NEW”按钮:

这里写图片描述

进入下图,在输入框中输入Tensorflow搜索,在Docker Hub搜索中选择一个,一般是第一个,点击“CREATE”按钮下载安装。
其他Jupyter NotebookTensorboard都可以在这里找到下载安装。

这里写图片描述


二、Hello, Tensorflow

1、编程步骤:

  1. 定义数据
  2. 定义计算图与变量
  3. 定义会话
  4. 进行计算

2、基于MNIST数据集的手写数字识别

这是很多教科书上的入门例子,但是没有说明其中代码依赖导致运行不起来。所以首先作为Tensorflow的入门例子,应该是包括在Tensorflow代码里的,先要把它clone下来:

git clone https://github.com/tensorflow/tensorflow

这时候可能因为权限问题无法拉下来,先去fork一份到自己名下就行了,或者直接打包下载。

接下来就能把代码跑起来了,写一遍感受一下

# 1、load data set
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

# 2、see data set:   
# train - test - validation

# train data set
# print(mnist.train.images.shape,mnist.train.labels.shape)

# test data set
# print(mnist.test.images.shape,mnist.test.labels.shape)

# validation data set
# print(mnist.validation.images.shape,mnist.validation.labels.shape)

# 3、开启tensorflow session
import tensorflow as tf
sess = tf.InteractiveSession()

# 4、define softmax regression
# x
x = tf.placeholder(tf.float32,[None,784])
# W
W = tf.Variable(tf.zeros([784,10]))
# b
b = tf.Variable(tf.zeros(10))
# y
y = tf.nn.softmax(tf.matmul(x,W) + b)
# y_
y_ = tf.placeholder(tf.float32,[None,10])
# loss
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y),reduction_indices=[1]))
# SGD
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
# init 
tf.global_variables_initializer().run()

# 5、trainning starts
for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    train_step.run({x:batch_xs, y_:batch_ys})
# trainning ends

# correct predictiong 
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
# accuracy
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
# evalue
print(accuracy.eval({x:mnist.test.images,y_:mnist.test.labels}))

三、参考

相关文章
|
1月前
|
机器学习/深度学习 算法 测试技术
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
本文是关于如何搭建深度学习环境,特别是使用mmdetection进行CPU安装和训练的详细指南。包括安装Anaconda、创建虚拟环境、安装PyTorch、mmcv-full和mmdetection,以及测试环境和训练目标检测模型的步骤。还提供了数据集准备、检查和网络训练的详细说明。
101 5
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
|
1月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
63 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
1月前
|
并行计算 PyTorch TensorFlow
Ubuntu安装笔记(一):安装显卡驱动、cuda/cudnn、Anaconda、Pytorch、Tensorflow、Opencv、Visdom、FFMPEG、卸载一些不必要的预装软件
这篇文章是关于如何在Ubuntu操作系统上安装显卡驱动、CUDA、CUDNN、Anaconda、PyTorch、TensorFlow、OpenCV、FFMPEG以及卸载不必要的预装软件的详细指南。
3918 3
|
12天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
44 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
12天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
44 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
12天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
54 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习
深度学习笔记(十二):普通卷积、深度可分离卷积、空间可分离卷积代码
本文探讨了深度可分离卷积和空间可分离卷积,通过代码示例展示了它们在降低计算复杂性和提高效率方面的优势。
64 2
深度学习笔记(十二):普通卷积、深度可分离卷积、空间可分离卷积代码
|
1月前
|
机器学习/深度学习 并行计算 PyTorch
深度学习环境搭建笔记(一):detectron2安装过程
这篇博客文章详细介绍了在Windows环境下,使用CUDA 10.2配置深度学习环境,并安装detectron2库的步骤,包括安装Python、pycocotools、Torch和Torchvision、fvcore,以及对Detectron2和PyTorch代码的修改。
160 1
深度学习环境搭建笔记(一):detectron2安装过程
|
1月前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
192 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
29天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
72 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
下一篇
无影云桌面