Akka是使用Scala语言开发一个编程库,基于事件驱动的架构实现异步处理,它能够简化编写分布式应用程序。Akka中最核心的概念是Actor模型,它为编写分布式/并行计算应用程序提供了高层次抽象,在实际编程实践中,开发人员可以从对复杂网络通信细节的处理、多线程应用场景下对锁的管理中解脱出来。
Akka能够给应用程序带来的几个重要的特性是:
- 容错性
- 可伸缩性
- 异步性
- 事件驱动架构(EDA)
- 远程透明性
Actor是Akka中最核心的组件,以至于我们在编写基于Akka的应用程序时,大部分时间都会和Actor打交道,那么Actor到底是怎样的一种抽象呢?一个Actor对象封装了状态和行为,但是它不和外界其它的Actor共享状态,如果一个Actor想要和另一个Actor交互,能且只能通过发送消息来达到信息交换的目的。可见,一个Actor能够很好地保护其内部状态的安全。
与本地Actor通信
下面,我们从最简单的Actor编程来体验Akka的功能。首先,先定义几种类型的消息,后面会基于这些消息来进行通信,代码如下所示:
01 |
package org.shirdrn.scala.akka
|
03 |
object Start extends Serializable
|
04 |
object Stop extends Serializable
|
10 |
case class Shutdown(waitSecs : Int) extends Serializable
|
11 |
case class Heartbeat(id : String, magic : Int) extends Message with Serializable
|
12 |
case class Header(id : String, len : Int, encrypted : Boolean) extends Message with Serializable
|
13 |
case class Packet(id : String, seq : Long, content : String) extends Message with Serializable
|
要实现一个Actor,需要继承自特质akka.actor.Actor,然后需要实现Actor特质声明的receive方法即可。另外,可选地可以混入另一个特质akka.actor.ActorLogging,提供记录日志的功能。我们首先实现的是一个Actor对象,然后拿到该Actor的一个引用(ActorRef),通过发送消息来与其进行交互,实现的Actor类为LocalActor ,代码如下所示:
01 |
class LocalActor extends Actor with ActorLogging {
|
04 |
case Start = > log.info( "start" )
|
05 |
case Stop = > log.info( "stop" )
|
06 |
case Heartbeat(id, magic) = > log.info( "Heartbeat" + (id, magic))
|
07 |
case Header(id, len, encrypted) = > log.info( "Header" + (id, len, encrypted))
|
08 |
case Packet(id, seq, content) = > log.info( "Packet" + (id, seq, content))
|
然后,实现一个带有main方法的类来与上面的LocalActor对象:
01 |
object LocalClient extends App {
|
03 |
val system = ActorSystem( "local-system" )
|
05 |
val localActorRef = system.actorOf(Props( new LocalServer()), name = "local-actor" )
|
06 |
println(localActorRef)
|
09 |
localActorRef ! Heartbeat( "3099100" , 0xabcd )
|
12 |
val content = new JSONObject()
|
13 |
content.put( "name" , "Stone" )
|
14 |
content.put( "empid" , 51082001 )
|
15 |
content.put( "score" , 89.36581 )
|
16 |
localActorRef ! Packet( "3000001" , System.currentTimeMillis(), content.toString)
|
虽然,我们只实现了一个本地Actor,但是这也非常有用,比如,我们在同一个JVM中有多个模块之间需要通过消息通信,完全可以实现多个本地Actor,他们之间进行通信,完成复杂的处理逻辑。
与远程Actor通信
在分布式应用场景中,通常需要跨节点进行通信,或者说交换消息,那么在使用Akka实现的时候就被抽象为在不同节点之上的多个Actor之间的交互。因为Akka提供的高层次抽象,所以在使用Akka编写分布式应用程序的时候,和编写本地应用程序一样简单。下面,我们实现一个伪分布式应用程序,使Actor在不同的JVM之内进行通信,实现上和在不同的节点上是一样的。
我们使用配置文件application.conf来指定通信处理过程中相关Actor的配置,包括远程Actor的主机名(或IP地址)和端口,包括本地Actor的基本配置。然后,只需要将该文件放在CLASSPATH之下即可,Akka会使用typesafe提供的配置解析工具ConfigFactory类来进行处理,配置文件application.conf中配置内容如下所示:
01 |
MyRemoteServerSideActor { |
04 |
provider = "akka.remote.RemoteActorRefProvider"
|
07 |
enabled-transports = ["akka.remote.netty.tcp"]
|
09 |
hostname = "127.0.0.1"
|
16 |
MyRemoteClientSideActor { |
19 |
provider = "akka.remote.RemoteActorRefProvider"
|
上面,MyRemoteServerSideActor指定了远程Actor的配置内容,Actor的provider配置为akka.remote.RemoteActorRefProvider,TPC通信配置的主机名为127.0.0.1,端口为2552;MyRemoteClientSideActor指定了本地Actor的配置,Actor的provider配置为akka.remote.RemoteActorRefProvider,下面看看代码实现。
实现远程Actor和实现一个本地Actor的方式是一样的,继承自特质Actor,并实现receive方法。我们实现的RemoteActor的代码如下所示:
01 |
class RemoteActor extends Actor with ActorLogging {
|
04 |
val SUCCESS = "SUCCESS"
|
05 |
val FAILURE = "FAILURE"
|
09 |
log.info( "RECV event: " + Start)
|
12 |
log.info( "RECV event: " + Stop)
|
14 |
case Shutdown(waitSecs) = > {
|
15 |
log.info( "Wait to shutdown: waitSecs=" + waitSecs)
|
16 |
Thread.sleep(waitSecs)
|
17 |
log.info( "Shutdown this system." )
|
18 |
context.system.shutdown
|
20 |
case Heartbeat(id, magic) = > log.info( "RECV heartbeat: " + (id, magic))
|
21 |
case Header(id, len, encrypted) = > log.info( "RECV header: " + (id, len, encrypted))
|
22 |
case Packet(id, seq, content) = > {
|
23 |
val originalSender = sender
|
24 |
log.info( "RECV packet: " + (id, seq, content))
|
25 |
originalSender ! (seq, SUCCESS)
|
上面的Actor实现了接收多种类型的消息:Start、Stop、Shutdown、Heartbeat、Header、Packet,其中一个Shutdown消息是可以将当前远程ActorSystem系统终止的,终止后就无法再处理任何请求,而Packet消息则会给发送方一个返回,告知处理结果。
一个Actor可以在自己内部终止自己,需要通过执行context.system.shutdown就可以实现。
启动我们实现的远程Actor系统,等待接收并处理消息,如下所示:
1 |
object AkkaServerApplication extends App {
|
3 |
val system = ActorSystem( "remote-system" , ConfigFactory.load().getConfig( "MyRemoteServerSideActor" ))
|
5 |
log.info( "Remote server actor started: " + system)
|
7 |
system.actorOf(Props[RemoteActor], "remoteActor" )
|
这里是程序的主入口,启动改程序可以看到控制台输出如下内容:
1 |
[INFO] [08/14/2015 11:52:45.747] [main] [Remoting] Starting remoting |
4 |
[INFO] [08/14/2015 11:52:46.239] [main] [ActorSystem(remote-system)] Remote server actor started: akka://remote-system |
可以看出,这与我们在配置文件,以及在代码中配置的内容相一致:ActorSystem系统名称为remote-system,通信端口为127.0.0.1:2552。
我们再看本地将要与远程Actor通信的客户端Actor的实现,如下所示:
01 |
class ClientActor extends Actor with ActorLogging {
|
05 |
val remoteServerRef = context.actorSelection(path)
|
07 |
@ volatile var connected = false
|
08 |
@ volatile var stop = false
|
15 |
log.info( "Actor connected: " + this )
|
23 |
case header : Header = > send(header)
|
24 |
case hb : Heartbeat = > sendWithCheck(hb)
|
25 |
case pkt : Packet = > sendWithCheck(pkt)
|
26 |
case cmd : Shutdown = > send(cmd)
|
28 |
case (seq, result) = > log.info( "RESULT: seq=" + seq + ", result=" + result)
|
29 |
case m = > log.info( "Unknown message: " + m)
|
32 |
private def sendWithCheck(cmd : Serializable) : Unit = {
|
35 |
log.info( "Wait to be connected..." )
|
40 |
log.warning( "Actor has stopped!" )
|
44 |
private def send(cmd : Serializable) : Unit = {
|
45 |
log.info( "Send command to server: " + cmd)
|
49 |
case e : Exception = > {
|
51 |
log.info( "Try to connect by sending Start command..." )
|
本地Actor会接收处理本地(当前JVM中)发送过来的消息,一个简单的check,然后进行转发,发送到远程Actor;也用来接收来自远程Actor响应的处理结果。接收并转发本地消息,包括如下类型消息:Start、Stop、Shutdown、Header、Heartbeat、Packet。其中,我们会在本地客户端创建一个单独的线程去周期性地发送心跳消息Heartbeat到远程Actor,同时将大量的Packet消息发送到远程Actor去处理。接收到的远程Actor响应的消息是一个Tuple类型,可以提取出seq和result数据,查看某个消息处理结果。下面是本地客户端的实现逻辑,如下所示:
01 |
object AkkaClientApplication extends App {
|
03 |
val system = ActorSystem( "client-system" , ConfigFactory.load().getConfig( "MyRemoteClientSideActor" ))
|
05 |
val clientActor = system.actorOf(Props[ClientActor], "clientActor" )
|
06 |
@ volatile var running = true
|
09 |
lazy val hbWorker = createHBWorker
|
14 |
def createHBWorker : Thread = {
|
15 |
new Thread( "HB-WORKER" ) {
|
16 |
override def run() : Unit = {
|
18 |
clientActor ! Heartbeat( "HB" , 39264 )
|
19 |
Thread.sleep(hbInterval)
|
25 |
def format(timestamp : Long, format : String) : String = {
|
26 |
val df = new SimpleDateFormat(format)
|
27 |
df.format( new Date(timestamp))
|
30 |
def createPacket(packet : Map[String, _ ]) : JSONObject = {
|
31 |
val pkt = new JSONObject()
|
32 |
packet.foreach(p = > pkt.put(p. _ 1 , p. _ 2 ))
|
36 |
val ID = new AtomicLong( 90760000 )
|
37 |
def nextTxID : Long = {
|
44 |
clientActor ! Header( "HEADER" , 20 , encrypted = false )
|
50 |
val DT _ FORMAT = "yyyy-MM-dd HH:mm:ss.SSS"
|
53 |
val serviceProviders = Seq( "CMCC" , "AKBBC" , "OLE" )
|
54 |
val payServiceProvicers = Seq( "PayPal" , "CMB" , "ICBC" , "ZMB" , "XXB" )
|
56 |
def nextProvider(seq : Seq[String]) : String = {
|
57 |
seq(r.nextInt(seq.size))
|
60 |
val startWhen = System.currentTimeMillis()
|
61 |
for (i <- 0 until packetCount) {
|
62 |
val pkt = createPacket(Map[String, Any](
|
64 |
"pvid" -> nextProvider(serviceProviders),
|
65 |
"txtm" -> format(System.currentTimeMillis(), DT _ FORMAT),
|
66 |
"payp" -> nextProvider(payServiceProvicers),
|
67 |
"amount" -> 1000 * r.nextFloat()))
|
68 |
clientActor ! Packet( "PKT" , System.currentTimeMillis, pkt.toString)
|
70 |
val finishWhen = System.currentTimeMillis()
|
71 |
log.info( "FINISH: timeTaken=" + (finishWhen - startWhen) + ", avg=" + packetCount/(finishWhen - startWhen))
|
76 |
val waitSecs = hbInterval
|
77 |
clientActor ! Shutdown(waitSecs)
|
80 |
while (hbWorker.isAlive) {
|
81 |
log.info( "Wait heartbeat worker to exit..." )
|
上面代码中有详细注释,可以了解具体实现。
使用Akka Future实例
前面的两种情况,我们模拟了Actor如果在本地/远程的上下文中进行通信处理,Akka很好地屏蔽了底层网络通信细节。接下来我们看看看Akka的Future功能,尤其是Future所支持异步Callback特性。
我们基于Akka实现的例子,如下图所示:
上图模拟了一个简易的有趣的爬虫系统,而且在这上面为了演示Akka的使用,我们在各个Actor之间增加了好多消息通信,可以根据上图中箭线上的编号来理解整个实例系统的执行流程。
存储网页链接,以及一个指定网页的出链接(Outlink)信息,我们使用MySQL数据库,创建了2个数据表,数据库及其表定义如下所示:
01 |
GRANT ALL ON *.* TO 'web' @ '%' IDENTIFIED BY 'web' ;
|
03 |
CREATE DATABASE `page_db` DEFAULT CHARACTER SET utf8;
|
05 |
CREATE TABLE `web_link` (
|
06 |
`link` CHAR (128) NOT NULL UNIQUE ,
|
07 |
`domain` VARCHAR (64) NOT NULL ,
|
08 |
`encoding` VARCHAR (11) NOT NULL DEFAULT 'utf-8' ,
|
09 |
`content_length` INT NOT NULL DEFAULT 0,
|
10 |
`create_time` VARCHAR (20) NOT NULL ,
|
12 |
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
|
15 |
CREATE TABLE `web_outlink` (
|
16 |
`link` CHAR (128) NOT NULL ,
|
17 |
`outlink` VARCHAR (128) NOT NULL ,
|
18 |
`create_time` VARCHAR (20) NOT NULL ,
|
19 |
PRIMARY KEY (`link`, `outlink`)
|
20 |
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
|
另外,Akka中Actor之间通过发送消息进行通信,所以我们首先定义几个case class,如下所示:
1 |
case class WebUrl(link : String)
|
2 |
case class ScheduledWebUrl(link : String, config : Map[String, Any])
|
3 |
case class CrawledWeb(link : String, domain : String, encoding : String, contentLength : Int, outlinks : Set[String])
|
4 |
case class Stored(link : String, outlinkCount : Int)
|
还有,操作MySQL以及日期时间转换操作,我们实现了两个工具类,如下所示:
03 |
val driverClass = "com.mysql.jdbc.Driver"
|
09 |
Class.forName(driverClass)
|
11 |
case e : ClassNotFoundException = > throw e
|
12 |
case e : Exception = > throw e
|
15 |
@ throws(classOf[SQLException])
|
16 |
def getConnection : Connection = {
|
17 |
DriverManager.getConnection(jdbcUrl, user, password)
|
20 |
@ throws(classOf[SQLException])
|
21 |
def doTrancation(transactions : Set[String]) : Unit = {
|
22 |
val connection = getConnection
|
23 |
connection.setAutoCommit( false )
|
24 |
transactions.foreach {
|
25 |
connection.createStatement.execute( _ )
|
32 |
object DatetimeUtils {
|