反应式编程 RxJava 设计原理解析

简介: 本篇文章主要聚焦对RxJava中几种主要的设计模式的理解,通过梳理Observable的相关类图以及讲解这些类之间的关系,让大家能够更清晰的理解RxJava中事件驱动的工作原理。

本文首发于 vivo互联网技术 微信公众号 
链接:https://mp.weixin.qq.com/s/duO1pAfaKUI2_x_GVvZHMg
作者:Yunjie Ma

一、ReactiveX 与 RxJava

ReactiveX 的全称为Reactive Extension,一般缩写为 Rx,即我们平常所说的反应式编程。其设计原理主要使用了观察者模式,区分数据的生产者和消费者,通过事件流的方式进行数据的异步处理。

RxJava 是 ReactiveX Java语言的实现,其编程体验与Java 8中的函数式编程和流(Stream)有很大的相似之处,在掌握了Java8的相关知识后,你可以很轻松的就上手使用 RxJava。

本篇文章主要聚焦对RxJava中几种主要的设计模式的理解,通过梳理Observable的相关类图以及讲解这些类之间的关系,让大家能够更清晰的理解RxJava中事件驱动的工作原理。

二、RxJava中的概念

首先我们写一个简单的RxJava的程序,把数组中的元素作为事件发送,最终由消费者打印在控制台:

我们以这段简单的代码为基础,讲解下贯穿整个ReactiveX设计的四个概念:观察者,被观察者,事件,订阅

  • 观察者:对事件进行响应的对象,也可以称作消费者,在上述的代码中,subscirbe方法的参数是一个Consumer对象,该对象后续会被包装成一个LambdaObserver对象,即为这段代码中的观察者(消费者)。

  • 被观察者:产生事件的对象,也可以称作生产者,在上述代码中,Observable.fromArray(...)返回的是一个Observable对象,即为这段程序的被观察者(生产者)。

  • 事件:RxJava中存在四种事件流:onSubscribe(订阅事件),onNext(正常事件),onError(异常事件),onComplete(完成事件)。在上述代码中,是将数组中的元素作为onNext事件中的数据进行发送。

  • 订阅:创建观察者与被观察者之间观察关系,对应着上述代码中的subscribe()方法。RxJava的事件驱动模型是一种“拉模型”,在观察者没有进行事件订阅之前是不会有事件产生的,只有观察者进行订阅后,才会触发被观察者生产事件。

对上述代码进行时序分析,可以清晰的看出这一段代码的运行过程,最终由FromArrayDisposable生产了onNext和onComplete事件,并通知Observer进行消费。

与此同时,我们也看到,简单的一行代码,竟然涉及这么多类的交互,如果增加一些其他的操作符,我们对整个程序把控起来就没那么容易了,下面我们将通过分析RxJava中的一些主要的设计模式,剖析类与类的关联关系,来更清晰地理解RxJava的工作原理。

三、 集大成者Observable

在整个数据处理的过程中,Observable可以说是最重要的一个对象。从上面的时序图可以看出,客户端(消息的生产者或者消费者)只和Observable进行交互,观察者和被观察者之间关系的创建也是由Observable去实现,而不用我们显示的编码实现,这大大降低了我们使用观察者模式的成本。

那么Observable主要有哪些作用呢,我们首先来看下和Observable相关的类图:

从图中我们可以看出:

  • Observable实现了ObservableSource接口,从字面意思就可以理解,这是一个提供观察能力的接口,所以Observable的一大能力是供观察者进行事件订阅,而进行事件订阅的方法实现就是调用Observable的subscribe()方法

  • Observable是一个抽象类,它提供了subscribeActual模板方法供子类实现,从源码中可以看出,Observable的subscribe()方法最终会委托子类的subscribeActual()方法实现,这个方法会建立生产者与消费者之间的关联关系。

  • 除此之外,Observable还是一个工厂类,它提供了静态方法fromArray()、create()等用来创建具体的可观察对象,同时还提供了flatMap()、concatMap()等操作方法对可观察对象进行包装。

Observable的存在让生产者和消费者完全的解耦了,生产者只需关注自己生成何种Observable对象,而消费者也只需关注自己观察的是哪种Observable。

在实际的应用中,Rxjava已经提供了各种各样的操作符供我们使用,生产者只需要调用Observable中相应的方法即可以生成所需的可观察对象,供消费者进行事件订阅。消费者只需调用可观察对象的subscribe()方法即可与生产者建立观察关系,极其方便。

四、 真实的观察

观察者模式是RxJava设计的核心思想,在观察者模式中总是存在观察的对象和被观察的对象,从上文的解析中也可以看出Observable更多的是一个控制器的作用,而并非真正的事件的来源。那么在RxJava中,什么才是真正的生产者,什么才是真正的消费者呢。

我们来分析下以下三种常见的Observable:

先简单介绍下这几个Observable的作用,fromArray的作用是将数组中的元素作为onNext事件发送,create的作用是发送自定义事件,just的作用是发送单个事件。

上一小节有讲到实际的订阅行为是由各个Observable类中subscribeActual()方法实现的,我们来看下这三个类的subscribeActual()方法。

除去细枝末节,这三个方法都可以分成以下三步

  1. 创建被观察者对象,并传入观察者observer,建立两者的关联关系;

  2. 触发onSubscribe事件,观察者响应该事件;

  3. 进行事件的拉取,我们可以进入到d.run(),source.subscribe(parent),sd.run()这些方法的内部看一些,可以看到这些方法就是在发送onNext(),onError(),onComplete()等事件。

下图是整个流程中的相关类图。实际事件的发送者是FromArrayDisposable等对象,而实际的观察者,则是一个实现了Observer接口的实体类。如果我们在subscribe时传入的是一个lambda表达式,之后会被包装成一个默认的LambdaObserver对象,进行事件消费。

五、 包装的必要

RxJava中提供了丰富的操作符,比如flatMap,concatMap等可以对事件转换,subscribeOn,observableOn等可以对生产和消费的线程进行控制。这些操作符实际上调用了Observable中的包装方法对原有的可观察对象进行包装,返回了一个增强了的可观察对象。

操作符种类繁多,在这就不一一举例,我们以flatMap为例,分析一下这些操作符是如何工作的。

首先,flatMap操作会返回一个ObservableFlatMap对象,在创建这个对象时,会将原始的Observable对象作为构造函数的参数传入。

查看其核心方法subscribeActual,

可以看到这一类对象的subscribeActual方法和上一节中的方法不太一样,这里面并没有去实际的创建观察关系,而是做了两件事:

  1. 对观察者进行增强,将其包装成为MergeObserver对象,由其对产生的时间进行响应。

  2. 再调用source的subscribe方法,这里source就是前面构造函数中传入的Observable对象,由其再进行观察关系的建立。

    下图是RxJava中装饰器模式的相关类图:所有的包装类都继承了AbstractObservableWithUpstream类,该抽象类有一个类型为ObservableSource的成员函数,用来持有被装饰的对象。
    
    

Observable是支持链式操作的,就和Java 8中的Stream一样,我们来考虑这样一行代码。

我们在分析上面这串代码时,一定会凌乱非常,在看源码时也会看到前面忘掉后面,但是如果我们对RxJava的包装流程足够了解的话,就可以很轻松的对上述代码进行分析。

六、 小结

RxJava的封装足够强大,可以让我们很方便的进行使用和扩展,但这也给我们理解其真实的工作原理带来了难度,如果我们对整个事件的处理过程处于一知半解的状态,那我们就无法从容的对服务进行异步编排,在实际开发过程中也难以发现问题的根源。

本文主要分析了RxJava中主要的设计模式,其中有模板模式、工厂模式、观察者模式、装饰器模式,理解了这些设计模式,理解了RxJava中类与类的关系,我们就能够对整个事件的处理流程了然于胸,分析代码时也能够事半功倍。

目录
相关文章
|
7月前
|
安全 算法 网络协议
解析:HTTPS通过SSL/TLS证书加密的原理与逻辑
HTTPS通过SSL/TLS证书加密,结合对称与非对称加密及数字证书验证实现安全通信。首先,服务器发送含公钥的数字证书,客户端验证其合法性后生成随机数并用公钥加密发送给服务器,双方据此生成相同的对称密钥。后续通信使用对称加密确保高效性和安全性。同时,数字证书验证服务器身份,防止中间人攻击;哈希算法和数字签名确保数据完整性,防止篡改。整个流程保障了身份认证、数据加密和完整性保护。
|
6月前
|
机器学习/深度学习 数据可视化 PyTorch
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
482 7
深入解析图神经网络注意力机制:数学原理与可视化实现
|
6月前
|
机器学习/深度学习 缓存 自然语言处理
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
Tiktokenizer 是一款现代分词工具,旨在高效、智能地将文本转换为机器可处理的离散单元(token)。它不仅超越了传统的空格分割和正则表达式匹配方法,还结合了上下文感知能力,适应复杂语言结构。Tiktokenizer 的核心特性包括自适应 token 分割、高效编码能力和出色的可扩展性,使其适用于从聊天机器人到大规模文本分析等多种应用场景。通过模块化设计,Tiktokenizer 确保了代码的可重用性和维护性,并在分词精度、处理效率和灵活性方面表现出色。此外,它支持多语言处理、表情符号识别和领域特定文本处理,能够应对各种复杂的文本输入需求。
802 6
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
|
7月前
|
机器学习/深度学习 算法 数据挖掘
解析静态代理IP改善游戏体验的原理
静态代理IP通过提高网络稳定性和降低延迟,优化游戏体验。具体表现在加快游戏网络速度、实时玩家数据分析、优化游戏设计、简化更新流程、维护网络稳定性、提高连接可靠性、支持地区特性及提升访问速度等方面,确保更流畅、高效的游戏体验。
188 22
解析静态代理IP改善游戏体验的原理
|
7月前
|
编解码 缓存 Prometheus
「ximagine」业余爱好者的非专业显示器测试流程规范,同时也是本账号输出内容的数据来源!如何测试显示器?荒岛整理总结出多种测试方法和注意事项,以及粗浅的原理解析!
本期内容为「ximagine」频道《显示器测试流程》的规范及标准,我们主要使用Calman、DisplayCAL、i1Profiler等软件及CA410、Spyder X、i1Pro 2等设备,是我们目前制作内容数据的重要来源,我们深知所做的仍是比较表面的活儿,和工程师、科研人员相比有着不小的差距,测试并不复杂,但是相当繁琐,收集整理测试无不花费大量时间精力,内容不完善或者有错误的地方,希望大佬指出我们好改进!
468 16
「ximagine」业余爱好者的非专业显示器测试流程规范,同时也是本账号输出内容的数据来源!如何测试显示器?荒岛整理总结出多种测试方法和注意事项,以及粗浅的原理解析!
|
6月前
|
传感器 人工智能 监控
反向寻车系统怎么做?基本原理与系统组成解析
本文通过反向寻车系统的核心组成部分与技术分析,阐述反向寻车系统的工作原理,适用于适用于商场停车场、医院停车场及火车站停车场等。如需获取智慧停车场反向寻车技术方案前往文章最下方获取,如有项目合作及技术交流欢迎私信作者。
444 2
|
8月前
|
机器学习/深度学习 自然语言处理 搜索推荐
自注意力机制全解析:从原理到计算细节,一文尽览!
自注意力机制(Self-Attention)最早可追溯至20世纪70年代的神经网络研究,但直到2017年Google Brain团队提出Transformer架构后才广泛应用于深度学习。它通过计算序列内部元素间的相关性,捕捉复杂依赖关系,并支持并行化训练,显著提升了处理长文本和序列数据的能力。相比传统的RNN、LSTM和GRU,自注意力机制在自然语言处理(NLP)、计算机视觉、语音识别及推荐系统等领域展现出卓越性能。其核心步骤包括生成查询(Q)、键(K)和值(V)向量,计算缩放点积注意力得分,应用Softmax归一化,以及加权求和生成输出。自注意力机制提高了模型的表达能力,带来了更精准的服务。
10222 46
|
7月前
|
Java 数据库 开发者
详细介绍SpringBoot启动流程及配置类解析原理
通过对 Spring Boot 启动流程及配置类解析原理的深入分析,我们可以看到 Spring Boot 在启动时的灵活性和可扩展性。理解这些机制不仅有助于开发者更好地使用 Spring Boot 进行应用开发,还能够在面对问题时,迅速定位和解决问题。希望本文能为您在 Spring Boot 开发过程中提供有效的指导和帮助。
768 12
|
7月前
|
开发框架 监控 JavaScript
解锁鸿蒙装饰器:应用、原理与优势全解析
ArkTS提供了多维度的状态管理机制。在UI开发框架中,与UI相关联的数据可以在组件内使用,也可以在不同组件层级间传递,比如父子组件之间、爷孙组件之间,还可以在应用全局范围内传递或跨设备传递。
161 2
|
6月前
|
负载均衡 JavaScript 前端开发
分片上传技术全解析:原理、优势与应用(含简单实现源码)
分片上传通过将大文件分割成多个小的片段或块,然后并行或顺序地上传这些片段,从而提高上传效率和可靠性,特别适用于大文件的上传场景,尤其是在网络环境不佳时,分片上传能有效提高上传体验。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~

推荐镜像

更多
  • DNS