排序算法简介及其C实现

简介: 排序算法(Sorting Algorithm)是计算机算法的一个组成部分。排序的目标是将一组数据 (即一个序列) 重新排列,排列后的数据符合从大到小 (或者从小到大) 的次序。

排序算法(Sorting Algorithm)是计算机算法的一个组成部分。



排序的目标是将一组数据 (即一个序列) 重新排列,排列后的数据符合从大到小 (或者从小到大) 的次序。这是古老但依然富有挑战的问题。Donald Knuth的经典之作《计算机程序设计艺术》(The Art of Computer Programming)的第三卷就专门用于讨论排序和查找。从无序到有序,有效的减小了系统的熵值,增加了系统的有序度。对于一个未知系统来说,有序是非常有用的先验知识。因此,排序算法很多时候构成了其他快速算法的基础,比如二分法就是基于有序序列的查找算法。直到今天,排序算法依然是计算机科学积极探索的一个方向。



我在这里列出一些最常见的排序方法,并尝试使用C语言实现它们。一组数据存储为一个数组a,数组有n个元素。a[i]为数组中的一个元素,i为元素在数组中的位置 (index)。根据C的规定,数组下标从0开始。假设数组从左向右排列,下标为0的元素位于数组的最左边。

序列将最终排列成从小到大的顺序。下面函数中的参数ac是数组中元素的数目,也就是n。

(C语言的数组名都转成指针,传递给函数,所以需要传递数组中元素的数目ac给函数,详细见"Expert C Programming: Deep C Secrets"一书)

下面的链接中,有相关算法的动画图例,强烈推荐同时阅读。

http://www.sorting-algorithms.com/



冒泡排序 (Bubble Sort)

对于一个已经排序好的序列,它的任意两个相邻元素,都应该满足a[i-1] <= a[i]的关系。冒泡排序相当暴力的实现了这一目标:不断扫描相邻元素,看它们是否违章。一旦违章,立即纠正。在冒泡排序时,计算机从右向左遍历数组,比较相邻的两个元素。如果两个元素的顺序是错的,那么sorry,请两位互换。如果两个元素的顺序是正确的,则不做交换。经过一次遍历,我们可以保证最小的元素(泡泡)处于最左边的位置。

然而,经过这么一趟,冒泡排序不能保证所有的元素已经按照次序排列好。我们需要再次从右向左遍历数组元素,进行冒泡排序。这一次遍历,我们不用考虑最左端的元素,因为该元素已经是最小的。遍历结束后,继续重复扫描…… 总共可能进行n-1次的遍历。

如果某次遍历过程中,没有发生交换,bingo,这个数组已经排序好,可以中止排序。如果起始时,最大的元素位于最左边,那么冒泡算法必须经过n-1次遍历才能将数组排列好,而不能提前完成排序。


/*By Vamei*/
/*swap the neighbors if out of order*/
void bubble_sort(int a[], int ac)
{
    /*use swap*/
    int i,j;
    int sign;
    for (j = 0; j < ac-1; j++) {
        sign = 0;
        for(i = ac-1; i > j; i--)
        {
            if(a[i-1] > a[i]) {
                sign = 1;
                swap(a+i, a+i-1);
            }
        }
        if (sign == 0) break;
    }
}



插入排序 (Insertion Sort)

假设在新生报到的时候,我们将新生按照身高排好队(也就是排序)。如果这时有一名学生加入,我们将该名学生加入到队尾。如果这名学生比前面的学生低,那么就让该学生和前面的学生交换位置。这名学生最终会换到应在的位置。这就是插入排序的基本原理。

对于起始数组来说,我们认为最初,有一名学生,也就是最左边的元素(i=0),构成一个有序的队伍。

随后有第二个学生(i=1)加入队伍,第二名学生交换到应在的位置;随后第三个学生加入队伍,第三名学生交换到应在的位置…… 当n个学生都加入队伍时,我们的排序就完成了。


/*By Vamei*/
/*insert the next element 
  into the sorted part*/
void insert_sort(int a[], int ac)
{
    /*use swap*/
    int i,j;    
    for (j=1; j < ac; j++) 
    {
        i = j-1;
        while((i>=0) && (a[i+1] < a[i])) 
        {
            swap(a+i+1, a+i);
            i--;
        }
    }
}


选择排序 (Selection Sort)

排序的最终结果:任何一个元素都不大于位于它右边的元素 (a[i] <= a[j], if i <= j)。所以,在有序序列中,最小的元素排在最左的位置,第二小的元素排在i=1的位置…… 最大的元素排在最后。

选择排序是先找到起始数组中最小的元素,将它交换到i=0;然后寻找剩下元素中最小的元素,将它交换到i=1的位置…… 直到找到第二大的元素,将它交换到n-2的位置。这时,整个数组的排序完成。


/*By Vamei*/
/*find the smallest of the rest,
  then append to the sorted part*/
void select_sort(int a[], int ac) 
{
    /*use swap*/
    int i,j;
    int min_idx;
    for (j = 0; j < ac-1; j++) 
    {
        min_idx = j;
        for (i = j+1; i < ac; i++) 
        {
            if (a[i] < a[min_idx]) 
            {
                min_idx = i;
            }
        }
        swap(a+j, a+min_idx);
    }    
}



希尔排序 (Shell Sort)

我们在冒泡排序中提到,最坏的情况发生在大的元素位于数组的起始。这些位于数组起始的大元素需要多次遍历,才能交换到队尾。这样的元素被称为乌龟(turtle)。

乌龟元素的原因在于,冒泡排序总是相邻的两个元素比较并交换。所以每次从右向左遍历,大元素只能向右移动一位。(小的元素位于队尾,被称为兔子(rabbit)元素,它们可以很快的交换到队首。)

希尔排序是以更大的间隔来比较和交换元素,这样,大的元素在交换的时候,可以向右移动不止一个位置,从而更快的移动乌龟元素。比如,可以将数组分为4个子数组(i=4k, i=4k+1, i=4k+2, i=4k+3),对每个子数组进行冒泡排序。比如子数组i=04812...。此时,每次交换的间隔为4。

完成对四个子数组的排序后,数组的顺序并不一定能排列好。希尔排序会不断减小间隔,重新形成子数组,并对子数组冒泡排序…… 当间隔减小为1时,就相当于对整个数组进行了一次冒泡排序。随后,数组的顺序就排列好了。

希尔排序不止可以配合冒泡排序,还可以配合其他的排序方法完成。


/*By Vamei*/
/*quickly sort the turtles at the tail of the array*/
void shell_sort(int a[], int ac)
{
    int step;
    int i,j;
    int nsub;
    int *sub;

    /* initialize step */
    step = 1;
    while(step < ac) step = 3*step + 1;

    /* when step becomes 1, it's equivalent to the bubble sort*/
    while(step > 1) {
       /* step will go down to 1 at most */
       step = step/3 + 1;
       for(i=0; i<step; i++) {
           /* pick an element every step, 
              and combine into a sub-array */
           nsub = (ac - i - 1)/step + 1;            
           sub = (int *) malloc(sizeof(int)*nsub);
           for(j=0; j<nsub; j++) {
               sub[j] = a[i+j*step]; 
           }
           /* sort the sub-array by bubble sorting. 
              It could be other sorting methods */
           bubble_sort(sub, nsub);
           /* put back the sub-array*/
           for(j=0; j<nsub; j++) {
               a[i+j*step] = sub[j];
           }
           /* free sub-array */
           free(sub);
       }    
    }
}

Shell Sorting依赖于间隔(step)的选取。一个常见的选择是将本次间隔设置为上次间隔的1/1.3。见参考书籍。



归并排序 (Merge Sort)

如果我们要将一副扑克按照数字大小排序。此前已经有两个人分别将其中的一半排好顺序。那么我们可以将这两堆扑克向上放好,假设小的牌在上面。此时,我们将看到牌堆中最上的两张牌。

我们取两张牌中小的那张取出放在手中。两个牌堆中又是两张牌暴露在最上面,继续取小的那张放在手中…… 直到所有的牌都放入手中,那么整副牌就排好顺序了。这就是归并排序。



下面的实现中,使用递归:


/*By Vamei*/
/*recursively merge two sorted arrays*/
void merge_sort(int *a, int ac)
{
    int i, j, k;    
    int ac1, ac2;
    int *ah1, *ah2;
    int *container;

    /*base case*/    
    if (ac <= 1) return;

    /*split the array into two*/
    ac1 = ac/2;
    ac2 = ac - ac1;
    ah1 = a + 0;
    ah2 = a + ac1;

    /*recursion*/
    merge_sort(ah1, ac1);
    merge_sort(ah2, ac2);

    /*merge*/
    i = 0;
    j = 0;
    k = 0;
    container = (int *) malloc(sizeof(int)*ac);
    while(i<ac1 && j<ac2) {
        if (ah1[i] <= ah2[j]) {
            container[k++] = ah1[i++];
        } 
        else {
            container[k++] = ah2[j++];
        }
    }
    while (i < ac1) {
        container[k++] = ah1[i++];
    }
    while (j < ac2) {
        container[k++] = ah2[j++];
    }

    /*copy back the sorted array*/
    for(i=0; i<ac; i++) {
        a[i] = container[i];
    }
    /*free space*/
    free(container);
}



快速排序 (Quick Sort)

我们依然考虑按照身高给学生排序。在快速排序中,我们随便挑出一个学生,以该学生的身高为参考(pivot)。然后让比该学生低的站在该学生的右边,剩下的站在该学生的左边。

很明显,所有的学生被分成了两组。该学生右边的学生的身高都大于该学生左边的学生的身高。

我们继续,在低身高学生组随便挑出一个学生,将低身高组的学生分为两组(很低和不那么低)。同样,将高学生组也分为两组(不那么高和很高)。

如此继续细分,直到分组中只有一个学生。当所有的分组中都只有一个学生时,则排序完成。



在下面的实现中,使用递归:


/*By Vamei*/
/*select pivot, put elements (<= pivot) to the left*/
void quick_sort(int a[], int ac)
{
    /*use swap*/

    /* pivot is a position, 
       all the elements before pivot is smaller or equal to pvalue */
    int pivot;
    /* the position of the element to be tested against pivot */
    int sample;

    /* select a pvalue.  
       Median is supposed to be a good choice, but that will itself take time.
       here, the pvalue is selected in a very simple wayi: a[ac/2] */
    /* store pvalue at a[0] */
    swap(a+0, a+ac/2);
    pivot = 1; 

    /* test each element */
    for (sample=1; sample<ac; sample++) {
        if (a[sample] < a[0]) {
            swap(a+pivot, a+sample);
            pivot++;
        }
    }
    /* swap an element (which <= pvalue) with a[0] */
    swap(a+0,a+pivot-1);

    /* base case, if only two elements are in the array,
       the above pass has already sorted the array */
    if (ac<=2) return;
    else {
        /* recursion */
        quick_sort(a, pivot);
        quick_sort(a+pivot, ac-pivot);
    }
}

理想的pivot是采用分组元素中的中位数。然而寻找中位数的算法需要另行实现。也可以随机选取元素作为pivot,随机选取也需要另行实现。为了简便,我每次都采用中间位置的元素作为pivot。 



堆排序 (Heap Sort)

堆(heap)是常见的数据结构。它是一个有优先级的队列。最常见的堆的实现是一个有限定操作的Complete Binary Tree。这个Complete Binary Tree保持堆的特性,也就是父节点(parent)大于子节点(children)。因此,堆的根节点是所有堆元素中最小的。堆定义有插入节点和删除根节点操作,这两个操作都保持堆的特性。

我们可以将无序数组构成一个堆,然后不断取出根节点,最终构成一个有序数组。

堆的更详细描述请阅读参考书目。



下面是堆的数据结构,以及插入节点和删除根节点操作。你可以很方便的构建堆,并取出根节点,构成有序数组。


/* By Vamei 
   Use an big array to implement heap
   DECLARE: int heap[MAXSIZE] in calling function
   heap[0] : total nodes in the heap
   for a node i, its children are i*2 and i*2+1 (if exists)
   its parent is i/2  */

void insert(int new, int heap[]) 
{
    int childIdx, parentIdx;
    heap[0] = heap[0] + 1;
    heap[heap[0]] = new;

    /* recover heap property */
    percolate_up(heap);
}

static void percolate_up(int heap[]) {
    int lightIdx, parentIdx;
    lightIdx  = heap[0];
    parentIdx = lightIdx/2;
    /* lightIdx is root? && swap? */
    while((parentIdx > 0) && (heap[lightIdx] < heap[parentIdx])) {
        /* swap */
        swap(heap + lightIdx, heap + parentIdx); 
        lightIdx  = parentIdx;
        parentIdx = lightIdx/2;
    }
}


int delete_min(int heap[]) 
{
    int min;
    if (heap[0] < 1) {
        /* delete element from an empty heap */
        printf("Error: delete_min from an empty heap.");
        exit(1);
    }

    /* delete root 
       move the last leaf to the root */
    min = heap[1];
    swap(heap + 1, heap + heap[0]);
    heap[0] -= 1;

    /* recover heap property */
    percolate_down(heap);

    return min;
}

static void percolate_down(int heap[]) {
    int heavyIdx;
    int childIdx1, childIdx2, minIdx;
    int sign; /* state variable, 1: swap; 0: no swap */

    heavyIdx = 1;
    do {
        sign     = 0;
        childIdx1 = heavyIdx*2;
        childIdx2 = childIdx1 + 1;
        if (childIdx1 > heap[0]) {
            /* both children are null */
            break; 
        }
        else if (childIdx2 > heap[0]) {
            /* right children is null */
            minIdx = childIdx1;
        }
        else {
            minIdx = (heap[childIdx1] < heap[childIdx2]) ?
                          childIdx1 : childIdx2;
        }

        if (heap[heavyIdx] > heap[minIdx]) {
            /* swap with child */
            swap(heap + heavyIdx, heap + minIdx);
            heavyIdx = minIdx;
            sign = 1;
        }
    } while(sign == 1);
}
总结

除了上面的算法,还有诸如Bucket Sorting, Radix Sorting涉及。我会在未来实现了相关算法之后,补充到这篇文章中。相关算法的时间复杂度分析可以参考书目中找到。我自己也做了粗糙的分析。如果博客园能支持数学公式的显示,我就把自己的分析过程贴出来,用于引玉。

上面的各个代码是我自己写的,只进行了很简单的测试。如果有错漏,先谢谢你的指正。

最后,上文中用到的交换函数为:

/* By Vamei */
/* exchange the values pointed by pa and pb*/
void swap(int *pa, int *pb)
{
    int tmp;
    tmp = *pa;
    *pa = *pb;
    *pb = tmp;
}

作者:Vamei 出处:http://www.cnblogs.com/vamei

目录
相关文章
|
8月前
|
存储 算法 安全
【加密算法】AES对称加密算法简介
【加密算法】AES对称加密算法简介
|
8月前
|
机器学习/深度学习 算法 安全
【加密算法】RSA非对称加密算法简介
【加密算法】RSA非对称加密算法简介
|
监控 算法 安全
二进制转十进制算法简介及其在监控软件中的应用
在上网行为管理软件中,匈牙利算法主要应用于解决资源分配的问题。上网行为管理软件可能存在多个用户同时访问同一文件或打印机的情况,为了确保资源的公平共享,需要对资源进行分配
245 2
|
8月前
|
机器学习/深度学习 算法 TensorFlow
机器学习算法简介:从线性回归到深度学习
【5月更文挑战第30天】本文概述了6种基本机器学习算法:线性回归、逻辑回归、决策树、支持向量机、随机森林和深度学习。通过Python示例代码展示了如何使用Scikit-learn、statsmodels、TensorFlow库进行实现。这些算法在不同场景下各有优势,如线性回归处理连续值,逻辑回归用于二分类,决策树适用于规则提取,支持向量机最大化类别间隔,随机森林集成多个决策树提升性能,而深度学习利用神经网络解决复杂模式识别问题。理解并选择合适算法对提升模型效果至关重要。
262 4
|
4月前
|
算法 Java 数据安全/隐私保护
国密加密算法简介
国密指国家密码局认定的国产密码算法,主要包括SM1、SM2、SM3、SM4等,并持续完善。SM1是对称加密算法,加密强度与AES相当,需加密芯片支持;SM2是非对称加密,基于ECC算法,签名和密钥生成速度优于RSA;SM3为杂凑算法,安全性高于MD5;SM4为对称加密算法,用于无线局域网标准。本文提供使用Java和SpringBoot实现SM2和SM4加密的示例代码及依赖配置。更多国密算法标准可参考国家密码局官网。
401 1
|
3月前
|
存储 算法 安全
ArrayList简介及使用全方位手把手教学(带源码),用ArrayList实现洗牌算法,3个人轮流拿牌(带全部源码)
文章全面介绍了Java中ArrayList的使用方法,包括其构造方法、常见操作、遍历方式、扩容机制,并展示了如何使用ArrayList实现洗牌算法的实例。
26 0
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
算法金 | 秒懂 AI - 深度学习五大模型:RNN、CNN、Transformer、BERT、GPT 简介
**RNN**,1986年提出,用于序列数据,如语言模型和语音识别,但原始模型有梯度消失问题。**LSTM**和**GRU**通过门控解决了此问题。 **CNN**,1989年引入,擅长图像处理,卷积层和池化层提取特征,经典应用包括图像分类和物体检测,如LeNet-5。 **Transformer**,2017年由Google推出,自注意力机制实现并行计算,优化了NLP效率,如机器翻译。 **BERT**,2018年Google的双向预训练模型,通过掩码语言模型改进上下文理解,适用于问答和文本分类。
176 9
|
6月前
|
算法
Raid5数据恢复—Raid5算法简介&raid5磁盘阵列数据恢复案例
Raid5算法也被称为“异或运算”。异或是一个数学运算符,它应用于逻辑运算。异或的数学符号为“⊕”,计算机符号为“xor”。异或的运算法则为:a⊕b = (¬a ∧ b) ∨ (a ∧¬b)。如果a、b两个值不相同,则异或结果为1。如果a、b两个值相同,异或结果为0。 异或也叫半加运算,其运算法则相当于不带进位的二进制加法。二进制下用1表示真,0表示假。异或的运算法则为:0⊕0=0,1⊕0=1,0⊕1=1,1⊕1=0(同为0,异为1),这些法则与加法是相同的,只是不带进位。 异或略称为XOR、EOR、EX-OR,程序中有三种演算子:XOR、xor、⊕。使用方法如下z = x ⊕ y z
Raid5数据恢复—Raid5算法简介&raid5磁盘阵列数据恢复案例
|
5月前
|
算法
【算法】贪心算法简介
【算法】贪心算法简介
129 0
|
5月前
|
算法
【算法】递归、搜索与回溯——简介
【算法】递归、搜索与回溯——简介

热门文章

最新文章