小心SQL SERVER 2014新特性——基数评估引起一些性能问题

本文涉及的产品
云数据库 RDS SQL Server,基础系列 2核4GB
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
简介: 在前阵子写的一篇博文“SQL SERVER 2014 下IF EXITS 居然引起执行计划变更的案例分享”里介绍了数据库从SQL SERVER 2005升级到 SQL SERVER 2014后,发现一个SQL出现性能问题,当时分析后发现执行计划变了,导致SQL出现了性能问题。

    在前阵子写的一篇博文“SQL SERVER 2014 下IF EXITS 居然引起执行计划变更的案例分享”里介绍了数据库从SQL SERVER 2005升级到 SQL SERVER 2014后,发现一个SQL出现性能问题,当时分析后发现执行计划变了,导致SQL出现了性能问题。但是没有彻底搞清楚为什么出现这种情况。当时看到Actual Number of Rows 与Estimated Number of Rows之间的偏差较大(统计信息是最新的),以为是优化器的Bug造成的。其实罪魁祸首是SQL SERVER 2014新特性——基数评估(Cardinality Estimator)所引起的。IF EXISTS完全成了我这个标题党的替罪羊(罪过罪过)。下面我再就这个问题展开做一次分析。

 

    查看该SQL语句的实际执行计划,在属性里面我们可以看到CardinalityEstimationModelVersion的值为120,120表示这是新的基数评估,70就是老的基数评估

其实当数据库的兼容级别为120的时候,默认使用新的基数评估。也就是说启用了新的基数评估,那么我们现在使用查询跟踪标记9481来关闭新的基数评估,使用老的基数评估。

DBCC TRACEON(9481, 1);
 
GO

启用跟踪标记9481后,这个SQL语句的执行计划变了(可以对比图4),可以看到CardinalityEstimationModelVersion的值也变为了70。SQL语句一秒就执行完了。这个是因为基数评估出现了偏差导致了不合适的JOIN算法。

我们对比下面”图四:旧执行计划“,发现其实还是使用Nested Loops,只是外部循环表与内部循环表变了。   

图四:旧执行计划

那么关于新的基数评估(Cardinality Estimator)特性,你想多了解一些这方面的知识,可以参考官方文档Optimizing Your Query Plans with the SQL Server 2014 Cardinality Estimator。 中文翻译版本可以参考SQL Server 2014新特性——基数评估(白皮书阅读笔记)下面是官方文档关于基数评估出现偏差可能会造成的一些后果:

 

对于基数评估,每个执行计划中的运算符都有评估值输入,这个值决定了优化器使用什么算法的操作符,同时也决定了最终的执行计划。所以如果评估出现偏差,会导致执行计划选择出现偏差,导致无法选出一个高效的执行计划。

评估出现偏差会出现以下结果:

如果评估过小:

1.原本可以使用并行计划更加有效的,现在使用串行计划

2.不合适的join算法

3.不合适的索引选择,和索引访问方法

如果评估过大:

1.原本使用串行计划更加有效,现在使用并行计划

2.不合适的join算法

3.不合适的索引选择,和索引访问方法

4.过多的内存分配

5.内存浪费和没必要的并发

上面这段对应的英文资料如下所示(英语原文作参考,这才是原汁原味的信息):

The individual operator cost models receive the estimates as input. The estimates are a major factor in deciding which physical operator algorithms and plan shapes (such as join orders) are chosen. They also determine the final query plan that executes. Given these critical plan choices, when the cardinality estimation process contains a significantly skewed assumption, this can lead to an inefficient plan choice. This can, in turn, result in degraded performance.

Under estimating rows can lead to memory spills to disk, for example, where not enough memory was requested for sort or hash operations. Under estimating rows can also result in:

  1. The selection of serial plan when parallelism would have been more optimal.
  2. Inappropriate join strategies.
  3. Inefficient index selection and navigation strategies.

Inversely, over estimating rows can lead to:

  1. Selection of a parallel plan when a serial plan might be more optimal.
  2. Inappropriate join strategy selection.
  3. Inefficient index navigation strategies (scan versus seek).
  4. Inflated memory grants.
  5. Wasted memory and unnecessarily throttled concurrency.

Improving the accuracy of row estimates can improve the quality of the query execution plan and, as a result, improve the performance of the query.

 

 

 

  其实关于SQL SERVER 2014这个新的基数评估(Cardinality Estimator)特性,确实造成了不少SQL出现性能问题。我们数据库升级到SQL SERVER 2014后,被这个新特性坑惨了,由于没有选择最优的执行计划,导致一些SQL出现严重的性能问题,也间接导致了SQL之间的阻塞(block)急剧上升。开发人员和我都在救火队员的角色中疲于奔命。最后我不得不采取将数据库的兼容基本从120降为110。从而立马解决了这个问题。另外从我搜索的一些资料看,SQL SERVER 2014这个新的基数评估(Cardinality Estimator)这个新特性确实还有很多不完善的地方。因为也有不少人都发现升级到SQL Server 2014后出现了性能问题。例如:

   MS SQL Server CPU load goes up dramatically when turning on 2014 features by setting compatibility level

      Query is slow in SQL Server 2014, fast in SQL Server 2012

 

参考资料:

http://dba.stackexchange.com/questions/95609/sql-server-performance-is-slow-when-migrated-from-sql-server-2012-to-sql-server

http://www.cnblogs.com/Amaranthus/p/3678647.html

相关实践学习
使用SQL语句管理索引
本次实验主要介绍如何在RDS-SQLServer数据库中,使用SQL语句管理索引。
SQL Server on Linux入门教程
SQL Server数据库一直只提供Windows下的版本。2016年微软宣布推出可运行在Linux系统下的SQL Server数据库,该版本目前还是早期预览版本。本课程主要介绍SQLServer On Linux的基本知识。 相关的阿里云产品:云数据库RDS SQL Server版 RDS SQL Server不仅拥有高可用架构和任意时间点的数据恢复功能,强力支撑各种企业应用,同时也包含了微软的License费用,减少额外支出。 了解产品详情: https://www.aliyun.com/product/rds/sqlserver
相关文章
|
26天前
|
SQL 数据库 UED
SQL性能提升秘籍:5步优化法与10个实战案例
在数据库管理和应用开发中,SQL查询的性能优化至关重要。高效的SQL查询不仅可以提高应用的响应速度,还能降低服务器负载,提升用户体验。本文将分享SQL优化的五大步骤和十个实战案例,帮助构建高效、稳定的数据库应用。
41 3
|
28天前
|
SQL IDE 数据库连接
IntelliJ IDEA处理大文件SQL:性能优势解析
在数据库开发和管理工作中,执行大型SQL文件是一个常见的任务。传统的数据库管理工具如Navicat在处理大型SQL文件时可能会遇到性能瓶颈。而IntelliJ IDEA,作为一个强大的集成开发环境,提供了一些高级功能,使其在执行大文件SQL时表现出色。本文将探讨IntelliJ IDEA在处理大文件SQL时的性能优势,并与Navicat进行比较。
30 4
|
1月前
|
SQL 存储 缓存
如何优化SQL查询性能?
【10月更文挑战第28天】如何优化SQL查询性能?
108 10
|
1月前
|
SQL 关系型数据库 MySQL
惊呆:where 1=1 可能严重影响性能,差了10多倍,快去排查你的 sql
老架构师尼恩在读者交流群中分享了关于MySQL中“where 1=1”条件的性能影响及其解决方案。该条件在动态SQL中常用,但可能在无真实条件时导致全表扫描,严重影响性能。尼恩建议通过其他条件或SQL子句命中索引,或使用MyBatis的`<where>`标签来避免性能问题。他还提供了详细的执行计划分析和优化建议,帮助大家在面试中展示深厚的技术功底,赢得面试官的青睐。更多内容可参考《尼恩Java面试宝典PDF》。
|
26天前
|
SQL 缓存 监控
SQL性能提升指南:五大优化策略与十个实战案例
在数据库性能优化的世界里,SQL优化是提升查询效率的关键。一个高效的SQL查询可以显著减少数据库的负载,提高应用响应速度,甚至影响整个系统的稳定性和扩展性。本文将介绍SQL优化的五大步骤,并结合十个实战案例,为你提供一份详尽的性能提升指南。
45 0
|
3月前
|
SQL 数据库
数据库数据恢复—SQL Server数据库报错“错误823”的数据恢复案例
SQL Server附加数据库出现错误823,附加数据库失败。数据库没有备份,无法通过备份恢复数据库。 SQL Server数据库出现823错误的可能原因有:数据库物理页面损坏、数据库物理页面校验值损坏导致无法识别该页面、断电或者文件系统问题导致页面丢失。
105 12
数据库数据恢复—SQL Server数据库报错“错误823”的数据恢复案例
|
24天前
|
SQL 存储 Linux
从配置源到数据库初始化一步步教你在CentOS 7.9上安装SQL Server 2019
【11月更文挑战第16天】本文介绍了在 CentOS 7.9 上安装 SQL Server 2019 的详细步骤,包括配置系统源、安装 SQL Server 2019 软件包以及数据库初始化,确保 SQL Server 正常运行。
|
1月前
|
SQL 存储 Linux
从配置源到数据库初始化一步步教你在CentOS 7.9上安装SQL Server 2019
【11月更文挑战第8天】本文介绍了在 CentOS 7.9 上安装 SQL Server 2019 的详细步骤,包括系统准备、配置安装源、安装 SQL Server 软件包、运行安装程序、初始化数据库以及配置远程连接。通过这些步骤,您可以顺利地在 CentOS 系统上部署和使用 SQL Server 2019。
|
1月前
|
SQL 存储 Linux
从配置源到数据库初始化一步步教你在CentOS 7.9上安装SQL Server 2019
【11月更文挑战第7天】本文介绍了在 CentOS 7.9 上安装 SQL Server 2019 的详细步骤,包括系统要求检查与准备、配置安装源、安装 SQL Server 2019、配置 SQL Server 以及数据库初始化(可选)。通过这些步骤,你可以成功安装并初步配置 SQL Server 2019,进行简单的数据库操作。
|
2月前
|
存储 数据挖掘 数据库
数据库数据恢复—SQLserver数据库ndf文件大小变为0KB的数据恢复案例
一个运行在存储上的SQLServer数据库,有1000多个文件,大小几十TB。数据库每10天生成一个NDF文件,每个NDF几百GB大小。数据库包含两个LDF文件。 存储损坏,数据库不可用。管理员试图恢复数据库,发现有数个ndf文件大小变为0KB。 虽然NDF文件大小变为0KB,但是NDF文件在磁盘上还可能存在。可以尝试通过扫描&拼接数据库碎片来恢复NDF文件,然后修复数据库。