思路: 二维树状数组
分析:
1 题目给定4种操作: S x1 y1 x2 y2 询问以(x1 , y1) - (x2 , y2)为对角线的矩形的面积,但是这个对角线不一定是正对角线。A x1 y1 n 把点(x1 , y1)加上n。D x1 y1 n点(x1 , y1)减去n如果不足n就全部删除即可。M x1 y1 x2 y2 n 把点(x1 , y1)点值中扣除n加到(x2 , y2),如果不过n则把(x1 , y1)值全部加到(x2 , y2)
2 简单的二维树状数组,但是注意在求矩形的面积的时候我们应该把矩形转化成正对角线的模式这样才不会错,在更显点的时候由于我们需要判断值的大小,所以我们需要一个数组保存每个点的值
3 初始化的时候由于每个点的值为1.那么树状数组treeNum[i][j] = lowbit(i)*lowbit(j)
代码:
/************************************************ * By: chenguolin * * Date: 2013-08-21 * * Address: http://blog.csdn.net/chenguolinblog * ***********************************************/ #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; const int MAXN = 1e3+10; int n; int num[MAXN][MAXN]; int treeNum[MAXN][MAXN]; int lowbit(int x){ return x&(-x); } int getSum(int x , int y){ int sum = 0; for(int i = x ; i > 0 ; i -= lowbit(i)) for(int j = y ; j > 0 ; j -= lowbit(j)) sum += treeNum[i][j]; return sum; } void add(int x , int y , int val){ for(int i = x ; i < MAXN ; i += lowbit(i)) for(int j = y ; j < MAXN ; j += lowbit(j)) treeNum[i][j] += val; } void init(){ memset(treeNum , 0 , sizeof(treeNum)); for(int i = 1 ; i < MAXN ; i++){ for(int j = 1 ; j < MAXN ; j++){ num[i][j] = 1; treeNum[i][j] = lowbit(i)*lowbit(j); } } } void solve(){ init(); char c; int x , y , val; int x1 , y1 , x2 , y2; int x3 , y3 , x4 , y4; while(n--){ scanf("%c" , &c); if(c == 'S'){ scanf("%d%d" , &x1 , &y1); scanf("%d%d%*c" , &x2 , &y2); x1++ , y1++ , x2++ , y2++; x3 = min(x1 , x2) , y3 = min(y1 , y2); x4 = max(x1 , x2) , y4 = max(y1 , y2); int ans = getSum(x4 , y4); ans -= getSum(x3-1 , y4); ans -= getSum(x4 , y3-1); ans += getSum(x3-1 , y3-1); printf("%d\n" , ans); } else if(c == 'A'){ scanf("%d%d%d%*c" , &x , &y , &val); x++ , y++; num[x][y] += val; add(x , y , val); } else if(c == 'D'){ scanf("%d%d%d%*c" , &x , &y , &val); x++ , y++; val = min(num[x][y] , val); num[x][y] -= val; add(x , y , -val); } else{ scanf("%d%d" , &x1 , &y1); scanf("%d%d%d%*c" , &x2 , &y2 , &val); x1++ , y1++ , x2++ , y2++; val = min(num[x1][y1] , val); num[x1][y1] -= val; num[x2][y2] += val; add(x1 , y1 , -val); add(x2 , y2 , val); } } } int main(){ int cas; int Case = 1; scanf("%d" , &cas); while(cas--){ scanf("%d%*c" , &n); printf("Case %d:\n" , Case++); solve(); } return 0; }