帆软FineReport如何使用程序数据集

简介: 大多数情况下,FineReport直接在设计器里使用“数据集查询”,直接写SQL就能满足报表要求,但对于一些复杂的报表,有时候SQL处理并不方便,这时可以把查询结果在应用层做一些预处理后,再传递给报表,即所谓的“程序数据集”,FineReport的帮助文档上给了一个示例: 1 package com.

大多数情况下,FineReport直接在设计器里使用“数据集查询”,直接写SQL就能满足报表要求,但对于一些复杂的报表,有时候SQL处理并不方便,这时可以把查询结果在应用层做一些预处理后,再传递给报表,即所谓的“程序数据集”,FineReport的帮助文档上给了一个示例:

  1 package com.fr.data;   
  2   
  3 import java.sql.Connection;   
  4 import java.sql.DriverManager;   
  5 import java.sql.ResultSet;   
  6 import java.sql.ResultSetMetaData;   
  7 import java.sql.Statement;   
  8 import java.util.ArrayList;   
  9 import com.fr.base.FRContext;   
 10 import com.fr.data.AbstractTableData;   
 11 import com.fr.base.Parameter;   
 12   
 13 public class ParamTableDataDemo extends AbstractTableData {   
 14     // 列名数组,保存程序数据集所有列名   
 15     private String[] columnNames = null;   
 16     // 定义程序数据集的列数量   
 17     private int columnNum = 10;   
 18     // 保存查询表的实际列数量   
 19     private int colNum = 0;   
 20     // 保存查询得到列值   
 21     private ArrayList valueList = null;   
 22   
 23     // 构造函数,定义表结构,该表有10个数据列,列名为column#0,column#1,。。。。。。column#9   
 24     public ParamTableDataDemo() {   
 25         // 定义tableName参数   
 26         this.parameters = new Parameter[] { new Parameter("tableName") };   
 27         // 定义程序数据集列名   
 28         columnNames = new String[columnNum];   
 29         for (int i = 0; i < columnNum; i++) {   
 30             columnNames[i] = "column#" + String.valueOf(i);   
 31         }   
 32     }   
 33   
 34     // 实现其他四个方法   
 35     public int getColumnCount() {   
 36         return columnNum;   
 37     }   
 38   
 39     public String getColumnName(int columnIndex) {   
 40         return columnNames[columnIndex];   
 41     }   
 42   
 43     public int getRowCount() {   
 44         init();   
 45         return valueList.size();   
 46     }   
 47   
 48     public Object getValueAt(int rowIndex, int columnIndex) {   
 49         init();   
 50         if (columnIndex >= colNum) {   
 51             return null;   
 52         }   
 53         return ((Object[]) valueList.get(rowIndex))[columnIndex];   
 54     }   
 55   
 56     // 准备数据   
 57     public void init() {   
 58         // 确保只被执行一次   
 59         if (valueList != null) {   
 60             return;   
 61         }   
 62         // 保存得到的数据库表名   
 63         String tableName = parameters[0].getValue().toString();   
 64         // 构造SQL语句,并打印出来   
 65         String sql = "select * from " + tableName + ";";   
 66         FRContext.getLogger().info("Query SQL of ParamTableDataDemo: \n" + sql);   
 67         // 保存得到的结果集   
 68         valueList = new ArrayList();   
 69         // 下面开始建立数据库连接,按照刚才的SQL语句进行查询   
 70         Connection conn = this.getConnection();   
 71         try {   
 72             Statement stmt = conn.createStatement();   
 73             ResultSet rs = stmt.executeQuery(sql);   
 74             // 获得记录的详细信息,然后获得总列数   
 75             ResultSetMetaData rsmd = rs.getMetaData();   
 76             colNum = rsmd.getColumnCount();   
 77             // 用对象保存数据   
 78             Object[] objArray = null;   
 79             while (rs.next()) {   
 80                 objArray = new Object[colNum];   
 81                 for (int i = 0; i < colNum; i++) {   
 82                     objArray[i] = rs.getObject(i + 1);   
 83                 }   
 84                 // 在valueList中加入这一行数据   
 85                 valueList.add(objArray);   
 86             }   
 87             // 释放数据库资源   
 88             rs.close();   
 89             stmt.close();   
 90             conn.close();   
 91             // 打印一共取到的数据行数量   
 92             FRContext.getLogger().info(   
 93                     "Query SQL of ParamTableDataDemo: \n" + valueList.size()   
 94                             + " rows selected");   
 95         } catch (Exception e) {   
 96             e.printStackTrace();   
 97         }   
 98     }   
 99   
100     // 获取数据库连接 driverName和 url 可以换成您需要的   
101     public Connection getConnection() {   
102         String driverName = "sun.jdbc.odbc.JdbcOdbcDriver";   
103         String url = "jdbc:odbc:Driver={Microsoft Access Driver (*.mdb)};DBQ=D:\\FineReport_7.0\\WebReport\\FRDemo.mdb";   
104         String username = "";   
105         String password = "";   
106         Connection con = null;   
107         try {   
108             Class.forName(driverName);   
109             con = DriverManager.getConnection(url, username, password);   
110         } catch (Exception e) {   
111             e.printStackTrace();   
112             return null;   
113         }   
114         return con;   
115     }   
116   
117     // 释放一些资源,因为可能会有重复调用,所以需释放valueList,将上次查询的结果释放掉   
118     public void release() throws Exception {   
119         super.release();   
120         this.valueList = null;   
121     }   
122 }  
View Code

这个示例我个人觉得有二个地方不太方便:
1、db连接串硬编码写死在代码里,维护起来不太方便,目前大多数b/s应用,对于数据库连接,通常是利用spring在xml里配置datasource bean,运行时动态注入

2、将查询出的结果,填充到数据集时,采用的是数字索引(见82行),代码虽然简洁,但是可读性比较差

折腾一番后,于是便有了下面的改进版本:

  1 package infosky.ckg.fr.data;
  2 
  3 import infosky.ckg.utils.AppContext;
  4 import java.sql.Connection;
  5 import java.sql.ResultSet;
  6 import java.sql.Statement;
  7 import java.util.LinkedHashMap;
  8 import java.util.LinkedHashSet;
  9 import javax.sql.DataSource;
 10 import com.fr.base.Parameter;
 11 import com.fr.data.AbstractTableData;
 12 import com.fr.general.data.TableDataException;
 13 
 14 public class ParameterLinkedHashSetDataDemo extends AbstractTableData {
 15 
 16     private static final long serialVersionUID = 8818000311745955539L;
 17 
 18     // 字段名枚举
 19     enum FIELD_NAME {
 20         EMPLOYEE_ID, FIRST_NAME, LAST_NAME, EMAIL, PHONE_NUMBER, HIRE_DATE, JOB_ID, SALARY
 21     }
 22 
 23     private String[] columNames;
 24 
 25     private LinkedHashSet<LinkedHashMap<String, Object>> rowData;
 26 
 27     public ParameterLinkedHashSetDataDemo() {
 28         this.parameters = new Parameter[] { new Parameter("jobId"),
 29                 new Parameter("minSalary"), new Parameter("maxSalary") };
 30 
 31         // 填充字段名
 32         columNames = new String[FIELD_NAME.values().length];
 33         int i = 0;
 34         for (FIELD_NAME fieldName : FIELD_NAME.values()) {
 35             columNames[i] = fieldName.toString();
 36             i++;
 37         }
 38 
 39     }
 40 
 41     @Override
 42     public int getColumnCount() throws TableDataException {
 43         return columNames.length;
 44     }
 45 
 46     @Override
 47     public String getColumnName(int columnIndex) throws TableDataException {
 48         return columNames[columnIndex];
 49     }
 50 
 51     @Override
 52     public int getRowCount() throws TableDataException {
 53         queryData();
 54         return rowData.size();
 55     }
 56 
 57     @Override
 58     public Object getValueAt(int rowIndex, int columnIndex) {
 59         queryData();
 60         int tempRowIndex = 0;
 61         for (LinkedHashMap<String, Object> row : rowData) {
 62             if (tempRowIndex == rowIndex) {
 63                 return row.get(columNames[columnIndex]);
 64             }
 65             tempRowIndex += 1;
 66         }
 67         return null;
 68     }
 69 
 70     // 查询数据
 71     private void queryData() {
 72         // 确保只被执行一次
 73         if (rowData != null) {
 74             return;
 75         }
 76 
 77         // 传入的参数
 78         String jobId = parameters[0].getValue().toString();
 79         float minSalary = Float.parseFloat(parameters[1].getValue().toString());
 80         float maxSalary = Float.parseFloat(parameters[2].getValue().toString());
 81 
 82         // 拼装SQL
 83         String sql = "select * from EMPLOYEES where JOB_ID='" + jobId
 84                 + "' and SALARY between " + minSalary + " and " + maxSalary;
 85 
 86         rowData = new LinkedHashSet<LinkedHashMap<String, Object>>();
 87 
 88         Connection conn = this.getConnection();
 89         try {
 90             Statement stmt = conn.createStatement();
 91             // 执行查询
 92             ResultSet rs = stmt.executeQuery(sql);
 93             while (rs.next()) {
 94                 // 填充行数据
 95                 // 注:字段赋值的顺序,要跟枚举里的顺序一样
 96                 LinkedHashMap<String, Object> row = new LinkedHashMap<String, Object>();
 97                 row.put(FIELD_NAME.EMPLOYEE_ID.toString(),
 98                         rs.getInt(FIELD_NAME.EMPLOYEE_ID.toString()));
 99                 row.put(FIELD_NAME.FIRST_NAME.toString(),
100                         rs.getString(FIELD_NAME.FIRST_NAME.toString()));
101                 row.put(FIELD_NAME.LAST_NAME.toString(),
102                         rs.getString(FIELD_NAME.LAST_NAME.toString()));
103                 row.put(FIELD_NAME.EMAIL.toString(),
104                         rs.getString(FIELD_NAME.EMAIL.toString()));
105                 row.put(FIELD_NAME.PHONE_NUMBER.toString(),
106                         rs.getString("PHONE_NUMBER"));
107                 row.put(FIELD_NAME.HIRE_DATE.toString(),
108                         rs.getDate(FIELD_NAME.HIRE_DATE.toString()));
109                 row.put(FIELD_NAME.JOB_ID.toString(),
110                         rs.getString(FIELD_NAME.JOB_ID.toString()));
111                 row.put(FIELD_NAME.SALARY.toString(),
112                         rs.getFloat(FIELD_NAME.SALARY.toString()));
113                 rowData.add(row);
114             }
115             rs.close();
116             stmt.close();
117             conn.close();
118         } catch (Exception e) {
119             e.printStackTrace();
120         }
121 
122     }
123 
124     // 获取数据库连接
125     private Connection getConnection() {
126         Connection con = null;
127         try {
128             DataSource dataSource = AppContext.getInstance().getAppContext()
129                     .getBean("dataSource", DataSource.class);
130             con = dataSource.getConnection();
131         } catch (Exception e) {
132             e.printStackTrace();
133             return null;
134         }
135         return con;
136     }
137 
138     // 释放资源
139     public void release() throws Exception {
140         super.release();
141         this.rowData = null;
142     }
143 
144 }
View Code

改进的地方:
1、getConnection方法,利用Spring注入datasource,当然为了注入方便,还需要一个辅助类AppContext

 1 package infosky.ckg.utils;
 2 
 3 import org.springframework.context.support.AbstractApplicationContext;
 4 import org.springframework.context.support.ClassPathXmlApplicationContext;
 5 
 6 public class AppContext {
 7     private static AppContext instance;
 8 
 9     private AbstractApplicationContext appContext;
10 
11     public synchronized static AppContext getInstance() {
12         if (instance == null) {
13             instance = new AppContext();
14         }
15         return instance;
16     }
17 
18     private AppContext() {
19         this.appContext = new ClassPathXmlApplicationContext(
20                 "spring/root-context.xml");
21     }
22 
23     public AbstractApplicationContext getAppContext() {
24         return appContext;
25     }
26 
27 }
View Code

classes/spring/root-context.xml 里配置db连接

 1 <?xml version="1.0" encoding="UTF-8"?>
 2 <beans xmlns="http://www.springframework.org/schema/beans"
 3     xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 4     xsi:schemaLocation="http://www.springframework.org/schema/beans 
 5     http://www.springframework.org/schema/beans/spring-beans.xsd">
 6 
 7     <bean id="dataSource"
 8         class="org.springframework.jdbc.datasource.DriverManagerDataSource">
 9         <property name="driverClassName" value="oracle.jdbc.driver.OracleDriver" />
10 
11         <property name="url" value="jdbc:oracle:thin:@localhost:1521:XE" />
12         <property name="username" value="hr" />
13         <property name="password" value="hr" />
14     </bean>
15 </beans>
View Code

2、将原来的数组,换成了LinkedHashSet<LinkedHashMap<String, Object>>,这样db查询结果填充到"数据集"时,处理代码的可读性就多好了(见queryData方法),但也要注意到LinkedHashSet/LinkedHashMap的性能较Array而言,有所下降,正所谓:有所得必有得失。但对于复杂的汇总统计报表,展示的数据通常不会太多,所以这个问题我个人看来并不严重。

 

目录
相关文章
|
3天前
|
SQL 数据可视化 数据挖掘
让项目数据更有说服力:五款必备数据可视化管理工具推荐
在现代企业管理中,数据是决策的重要依据。有效的数据可视化工具能帮助项目经理快速洞察项目进展、评估风险、优化资源配置。本文推荐五款必备的数据可视化管理工具,包括板栗看板、Power BI、Tableau、Google Data Studio和Qlik Sense,从功能、易用性和优缺点等方面进行全面评析,帮助您将数据转化为行动,推动项目高效前行。
24 4
|
24天前
|
监控 JavaScript 数据可视化
FineReport 11 在线学习
FineReport 11 在线学习
50 7
|
6月前
|
前端开发
基于jeecgboot的大屏设计器开发——数据集设计(一)
基于jeecgboot的大屏设计器开发——数据集设计(一)
136 3
|
5月前
|
供应链 数据可视化 搜索推荐
【python plotly库介绍】从视觉到洞见:桑基图在业务分析中的应用【保姆级教程过于详细珍藏版】
【python plotly库介绍】从视觉到洞见:桑基图在业务分析中的应用【保姆级教程过于详细珍藏版】
|
数据挖掘 BI 数据处理
读者求助|利用 R Markdown 批量制作数据分析报告
读者求助|利用 R Markdown 批量制作数据分析报告
175 0
|
数据可视化
基于销售软件利润表的数据可视化分析:数据+代码+实验报告:
基于销售软件利润表的数据可视化分析:数据+代码+实验报告:
138 0
基于销售软件利润表的数据可视化分析:数据+代码+实验报告:
|
数据可视化 BI
FineReport 数据可视化平台设计笔记
FineReport如何添加控件(自己安装插件)?
199 0
FineReport 数据可视化平台设计笔记
|
数据挖掘
一文速览-数据分析基础以及常规流程
一文速览-数据分析基础以及常规流程
121 0
一文速览-数据分析基础以及常规流程
|
数据可视化 数据挖掘 API
数据分析三剑客【AIoT阶段一(下)】(十万字博文 保姆级讲解)—Matplotlib—数据可视化高级(七)
你好,感谢你能点进来本篇博客,请不要着急退出,相信我,如果你有一定的 Python 基础,想要学习 Python数据分析的三大库:numpy,pandas,matplotlib;这篇文章不会让你失望,本篇博客是 【AIoT阶段一(下)】 的内容:Python数据分析,
192 0
数据分析三剑客【AIoT阶段一(下)】(十万字博文 保姆级讲解)—Matplotlib—数据可视化高级(七)
|
数据可视化 数据挖掘 索引
数据分析三剑客【AIoT阶段一(下)】(十万字博文 保姆级讲解)—Matplotlib—数据可视化高级(八)
你好,感谢你能点进来本篇博客,请不要着急退出,相信我,如果你有一定的 Python 基础,想要学习 Python数据分析的三大库:numpy,pandas,matplotlib;这篇文章不会让你失望,本篇博客是 【AIoT阶段一(下)】 的内容:Python数据分析,
179 0
数据分析三剑客【AIoT阶段一(下)】(十万字博文 保姆级讲解)—Matplotlib—数据可视化高级(八)
下一篇
无影云桌面