Hadoop-2.6.0 DFSClient Hedged Read实现分析

简介: 一、简介      DFSClient Hedged Read是Hadoop-2.4.0引入的一个新特性,如果读取一个数据块的操作比较慢,DFSClient Hedged Read将会开启一个从另一个副本的hedged读操作。

一、简介

      DFSClient Hedged Read是Hadoop-2.4.0引入的一个新特性,如果读取一个数据块的操作比较慢,DFSClient Hedged Read将会开启一个从另一个副本的hedged读操作。我们会选取首先完成的操作,并取消其它操作。这个Hedged读特性将有助于控制异常值,比如由于命中一个坏盘等原因而需要花费较长时间的异常阅读等。

二、开启

      DFSClient Hedged Read特性默认是关闭的。如果要开启,则需配置如下:

      1、dfs.client.hedged.read.threadpool.size

      并发Hedged 读的线程池大小

      2、dfs.client.hedged.read.threshold.millis

      开启一个Hedged 读前的等待时间(毫秒)

三、实现分析

      1、DFSClient实现

      DFSClient中,定义了一个静态线程池:

    private static ThreadPoolExecutor HEDGED_READ_THREAD_POOL;

      DFSClient的构造函数中,有如下处理:

    this.hedgedReadThresholdMillis = conf.getLong(
        DFSConfigKeys.DFS_DFSCLIENT_HEDGED_READ_THRESHOLD_MILLIS,
        DFSConfigKeys.DEFAULT_DFSCLIENT_HEDGED_READ_THRESHOLD_MILLIS);
    int numThreads = conf.getInt(
        DFSConfigKeys.DFS_DFSCLIENT_HEDGED_READ_THREADPOOL_SIZE,
        DFSConfigKeys.DEFAULT_DFSCLIENT_HEDGED_READ_THREADPOOL_SIZE);
    if (numThreads > 0) {
      this.initThreadsNumForHedgedReads(numThreads);
    }
      根据参数dfs.client.hedged.read.threadpool.size确定是否实例化线程池,而initThreadsNumForHedgedReads()方法如下:

  /**
   * Create hedged reads thread pool, HEDGED_READ_THREAD_POOL, if
   * it does not already exist.
   * @param num Number of threads for hedged reads thread pool.
   * If zero, skip hedged reads thread pool creation.
   */
  private synchronized void initThreadsNumForHedgedReads(int num) {
    if (num <= 0 || HEDGED_READ_THREAD_POOL != null) return;
    HEDGED_READ_THREAD_POOL = new ThreadPoolExecutor(1, num, 60,
        TimeUnit.SECONDS, new SynchronousQueue<Runnable>(),
        new Daemon.DaemonFactory() {
          private final AtomicInteger threadIndex =
            new AtomicInteger(0); 
          @Override
          public Thread newThread(Runnable r) {
            Thread t = super.newThread(r);
            t.setName("hedgedRead-" +
              threadIndex.getAndIncrement());
            return t;
          }
        },
        new ThreadPoolExecutor.CallerRunsPolicy() {

      @Override
      public void rejectedExecution(Runnable runnable,
          ThreadPoolExecutor e) {
        LOG.info("Execution rejected, Executing in current thread");
        HEDGED_READ_METRIC.incHedgedReadOpsInCurThread();
        // will run in the current thread
        super.rejectedExecution(runnable, e);
      }
    });
    HEDGED_READ_THREAD_POOL.allowCoreThreadTimeOut(true);
    if (LOG.isDebugEnabled()) {
      LOG.debug("Using hedged reads; pool threads=" + num);
    }
  }
      实例化了一个ThreadPoolExecutor,corePoolSize大小是1,maximumPoolSize大小是参数,workQueue为一个没有数据缓冲的阻塞队列,ThreadFactory是Hadoop自己实现的后台线程工厂,并自定义了RejectedExecutionHandler,主要是在有异常时实现HEDGED_READ_METRIC.incHedgedReadOpsInCurThread(),即计数器减1。

      最后,DFSClient提供了如下几个get和set方法,方便输入流调用:

  long getHedgedReadTimeout() {
    return this.hedgedReadThresholdMillis;
  }

  @VisibleForTesting
  void setHedgedReadTimeout(long timeoutMillis) {
    this.hedgedReadThresholdMillis = timeoutMillis;
  }

  ThreadPoolExecutor getHedgedReadsThreadPool() {
    return HEDGED_READ_THREAD_POOL;
  }

  boolean isHedgedReadsEnabled() {
    return (HEDGED_READ_THREAD_POOL != null) &&
      HEDGED_READ_THREAD_POOL.getMaximumPoolSize() > 0;
  }

  DFSHedgedReadMetrics getHedgedReadMetrics() {
    return HEDGED_READ_METRIC;
  }
      2、DFSInputStream实现

      在输入流DFSInputStream的read方法中,会通过dfsClient.isHedgedReadsEnabled()判断是否开启了Hedged Read特性,在其开启的情况下,调用hedgedFetchBlockByteRange()方法进行数据读取操作,如下:

        if (dfsClient.isHedgedReadsEnabled()) {
          hedgedFetchBlockByteRange(blk, targetStart, targetStart + bytesToRead
              - 1, buffer, offset, corruptedBlockMap);
        } else {
          fetchBlockByteRange(blk, targetStart, targetStart + bytesToRead - 1,
              buffer, offset, corruptedBlockMap);
        }
      hedgedFetchBlockByteRange()方法通过ExecutorCompletionService和Future List实现了Hedged Read特性,具体实现如下:

      1、构造一个futures列表:

ArrayList<Future<ByteBuffer>> futures = new ArrayList<Future<ByteBuffer>>();
      2、构造一个ExecutorCompletionService:

    CompletionService<ByteBuffer> hedgedService =
        new ExecutorCompletionService<ByteBuffer>(
        dfsClient.getHedgedReadsThreadPool());
      3、计算数据块和长度;

    ByteBuffer bb = null;
    int len = (int) (end - start + 1);
    block = getBlockAt(block.getStartOffset(), false);
      4、在一个while循环内,分两种情况:

            1)第一次读取时:从NameNode选取DataNode,即chooseDataNode,构造Callable并提交至hedgedService,获取Future<ByteBuffer> firstRequest,然后

用非阻塞的poll获取结果future,判断future是否成功,成功即返回,否则在ignored中添加下次需要忽略的本节点,incHedgedReadOps计数并继续;

            2)通过getBestNodeDNAddrPair或chooseDataNode选取DataNode,构造Callable并提交至hedgedService,通过getFirstToComplete获取第一个成功的结果后,调用cancelAll取消其它的,并计数,否则也是计数外加忽略本次DataNode。

            getFirstToComplete中,是通过阻塞式的hedgedService.take()来实现的。

            具体代码如下:

    while (true) {
      // see HDFS-6591, this metric is used to verify/catch unnecessary loops
      hedgedReadOpsLoopNumForTesting++;
      DNAddrPair chosenNode = null;
      // there is no request already executing.
      if (futures.isEmpty()) {
        // chooseDataNode is a commitment. If no node, we go to
        // the NN to reget block locations. Only go here on first read.
        chosenNode = chooseDataNode(block, ignored);
        bb = ByteBuffer.wrap(buf, offset, len);
        Callable<ByteBuffer> getFromDataNodeCallable = getFromOneDataNode(
            chosenNode, block, start, end, bb, corruptedBlockMap);
        Future<ByteBuffer> firstRequest = hedgedService
            .submit(getFromDataNodeCallable);
        futures.add(firstRequest);
        try {
          Future<ByteBuffer> future = hedgedService.poll(
              dfsClient.getHedgedReadTimeout(), TimeUnit.MILLISECONDS);
          if (future != null) {
            future.get();
            return;
          }
          if (DFSClient.LOG.isDebugEnabled()) {
            DFSClient.LOG.debug("Waited " + dfsClient.getHedgedReadTimeout()
                + "ms to read from " + chosenNode.info
                + "; spawning hedged read");
          }
          // Ignore this node on next go around.
          ignored.add(chosenNode.info);
          dfsClient.getHedgedReadMetrics().incHedgedReadOps();
          continue; // no need to refresh block locations
        } catch (InterruptedException e) {
          // Ignore
        } catch (ExecutionException e) {
          // Ignore already logged in the call.
        }
      } else {
        // We are starting up a 'hedged' read. We have a read already
        // ongoing. Call getBestNodeDNAddrPair instead of chooseDataNode.
        // If no nodes to do hedged reads against, pass.
        try {
          try {
            chosenNode = getBestNodeDNAddrPair(block, ignored);
          } catch (IOException ioe) {
            chosenNode = chooseDataNode(block, ignored);
          }
          bb = ByteBuffer.allocate(len);
          Callable<ByteBuffer> getFromDataNodeCallable = getFromOneDataNode(
              chosenNode, block, start, end, bb, corruptedBlockMap);
          Future<ByteBuffer> oneMoreRequest = hedgedService
              .submit(getFromDataNodeCallable);
          futures.add(oneMoreRequest);
        } catch (IOException ioe) {
          if (DFSClient.LOG.isDebugEnabled()) {
            DFSClient.LOG.debug("Failed getting node for hedged read: "
                + ioe.getMessage());
          }
        }
        // if not succeeded. Submit callables for each datanode in a loop, wait
        // for a fixed interval and get the result from the fastest one.
        try {
          ByteBuffer result = getFirstToComplete(hedgedService, futures);
          // cancel the rest.
          cancelAll(futures);
          if (result.array() != buf) { // compare the array pointers
            dfsClient.getHedgedReadMetrics().incHedgedReadWins();
            System.arraycopy(result.array(), result.position(), buf, offset,
                len);
          } else {
            dfsClient.getHedgedReadMetrics().incHedgedReadOps();
          }
          return;
        } catch (InterruptedException ie) {
          // Ignore and retry
        }
        // We got here if exception. Ignore this node on next go around IFF
        // we found a chosenNode to hedge read against.
        if (chosenNode != null && chosenNode.info != null) {
          ignored.add(chosenNode.info);
        }
      }
    }
        而getFirstToComplete实现如下:

  private ByteBuffer getFirstToComplete(
      CompletionService<ByteBuffer> hedgedService,
      ArrayList<Future<ByteBuffer>> futures) throws InterruptedException {
    if (futures.isEmpty()) {
      throw new InterruptedException("let's retry");
    }
    Future<ByteBuffer> future = null;
    try {
      future = hedgedService.take();
      ByteBuffer bb = future.get();
      futures.remove(future);
      return bb;
    } catch (ExecutionException e) {
      // already logged in the Callable
      futures.remove(future);
    } catch (CancellationException ce) {
      // already logged in the Callable
      futures.remove(future);
    }

    throw new InterruptedException("let's retry");
  }
        over...






相关文章
|
6月前
|
分布式计算 Hadoop
Hadoop系列 mapreduce 原理分析
Hadoop系列 mapreduce 原理分析
79 1
|
1月前
|
SQL 分布式计算 Hadoop
Hadoop-19 Flume Agent批量采集数据到HDFS集群 监听Hive的日志 操作则把记录写入到HDFS 方便后续分析
Hadoop-19 Flume Agent批量采集数据到HDFS集群 监听Hive的日志 操作则把记录写入到HDFS 方便后续分析
46 2
|
6月前
|
SQL 分布式计算 Hadoop
hadoop数据查询和分析
【5月更文挑战第9天】
154 1
|
1月前
|
SQL 分布式计算 大数据
大数据平台的毕业设计01:Hadoop与离线分析
大数据平台的毕业设计01:Hadoop与离线分析
104 0
|
3月前
|
存储 SQL 分布式计算
Hadoop生态系统概述:构建大数据处理与分析的基石
【8月更文挑战第25天】Hadoop生态系统为大数据处理和分析提供了强大的基础设施和工具集。通过不断扩展和优化其组件和功能,Hadoop将继续在大数据时代发挥重要作用。
|
4月前
|
存储 分布式计算 并行计算
使用Hadoop构建Java大数据分析平台
使用Hadoop构建Java大数据分析平台
|
6月前
|
分布式计算 Hadoop 关系型数据库
Hadoop任务scan Hbase 导出数据量变小分析
Hadoop任务scan Hbase 导出数据量变小分析
95 0
|
5月前
|
分布式计算 Hadoop Java
使用Hadoop MapReduce分析邮件日志提取 id、状态 和 目标邮箱
使用Hadoop MapReduce分析邮件日志提取 id、状态 和 目标邮箱
|
6月前
|
新零售 分布式计算 数据可视化
数据分享|基于Python、Hadoop零售交易数据的Spark数据处理与Echarts可视化分析
数据分享|基于Python、Hadoop零售交易数据的Spark数据处理与Echarts可视化分析
|
6月前
|
资源调度 分布式计算 Hadoop
【Hadoop Yarn】Yarn 调度器分析
【4月更文挑战第7天】【Hadoop Yarn】Yarn 调度器分析

相关实验场景

更多
下一篇
无影云桌面