顺序表应用3:元素位置互换之移位算法

简介: 顺序表应用3:元素位置互换之移位算法 Time Limit: 1000MS Memory Limit: 570KB Problem Description 一个长度为len(1

顺序表应用3:元素位置互换之移位算法

Time Limit: 1000MS  Memory Limit: 570KB

Problem Description

一个长度为len(1<=len<=1000000)的顺序表,数据元素的类型为整型,将该表分成两半,前一半有m个元素,后一半有len-m个元素(1<=m<=len),借助元素移位的方式,设计一个空间复杂度为O(1)的算法,改变原来的顺序表,把顺序表中原来在前的m个元素放到表的后段,后len-m个元素放到表的前段。
注意:先将顺序表元素调整为符合要求的内容后,再做输出,输出过程只能用一个循环语句实现,不能分成两个部分。

Input

  第一行输入整数n,代表下面有n行输入;
之后输入n行,每行先输入整数len与整数m(分别代表本表的元素总数与前半表的元素个数),之后输入len个整数,代表对应顺序表的每个元素。

Output

  输出有n行,为每个顺序表前m个元素与后(len-m)个元素交换后的结果

Example Input

2
10 3 1 2 3 4 5 6 7 8 9 10
5 3 10 30 20 50 80

Example Output

4 5 6 7 8 9 10 1 2 3
50 80 10 30 20

Code realization

#include <stdio.h>
#include <stdlib.h>
#define maxn 1000000
typedef int element;
typedef struct
{
    element *elem;
    int length;
    int listsize;
}lis;
//开内存
void creat(lis &L,int len)
{
    L.elem = (element*)malloc(len*sizeof(element));
    L.length=0;
    L.listsize=maxn;

}
//输入函数
void sca(lis &L,int len)
{
    L.length=len;
    for(int i=0;i<L.length;i++)
    {
        scanf("%d",&L.elem[i]);
    }
}
//输出函数
void pri(lis &L)
{
    for(int i=0;i<L.length;i++)
    {
        printf("%d",L.elem[i]);
        if(i<L.length-1)
            printf(" ");
    }
    printf("\n");
}
//移位函数
void mo(lis &L,int m)
{
    int a[m],i;
    for(i=0;i<m;i++)
    {
        a[i]=L.elem[i];
    }
    for(i=0;i<L.length-m;i++)
    {
        L.elem[i]=L.elem[m+i];
    }
    int k=0;
    for(i=L.length-m;i<L.length;i++)
    {

        L.elem[i]=a[k];
        k++;
    }
}
int main()
{
    lis L;
    int n,len,m;
    scanf("%d",&n);
    while(n--)
    {
        scanf("%d%d",&len,&m);
        creat(L,len);
        sca(L,len);
        mo(L,m);
        pri(L);

    }
    return 0;
}


目录
相关文章
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
解锁机器学习的新维度:元学习的算法与应用探秘
元学习作为一个重要的研究领域,正逐渐在多个应用领域展现其潜力。通过理解和应用元学习的基本算法,研究者可以更好地解决在样本不足或任务快速变化的情况下的学习问题。随着研究的深入,元学习有望在人工智能的未来发展中发挥更大的作用。
|
1天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
|
2月前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
74 0
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。

热门文章

最新文章