独家 | 教你在R中使用Keras和TensorFlow构建深度学习模型

简介:

引言:


在R和Python之间如何进行选择一直是一个热议的话题。机器学习世界也被不同语言偏好所划分。但是随着深度学习的盛行,天平逐渐向Python倾斜,因为截至目前为止Python具有大量R所没有的深度学习的资源库和框架。


我个人从R转到Python是因为我想更加深入机器学习的领域,而仅仅使用R的话,这(在之前)是几乎不可能实现的事情。不过也仅此而已!


随着Keras在R中的实现,语言选择的斗争又重新回到舞台中央。Python几乎已经慢慢变成深度学习建模的默认语言,但是随着在R中以TensorFlow(CPU和GPU均兼容)为后端的Keras框架的发行, 即便是在深度学习领域,R与Python抢占舞台的战争也再一次打响。


下面我们将会看到怎样在R中安装以TensorFlow为基础的Keras框架,然后在RStudio中构建我们基于经典MNIST数据集的第一个神经网络模型。

 

内容列表:


  • 以TensorFlow为后端的Keras框架安装

  • 在R中可以使用Keras来构建模型的不同类型

  • 在R中使用MLP将MNIST手写数字进行归类

  • 将MNIST结果与Python中同等代码结果进行比较

  • 结语

 

一、以TensorFlow为后端的Keras框架安装


在RStudio中安装Keras的步骤非常简单。只要跟着以下步骤,你就可以在R中构建你的第一个神经网络模型。


install.packages("devtools")

devtools::install_github("rstudio/keras")


以上步骤会从Github资源库下载Keras。现在是时候把keras加载进R,然后安装TensorFlow。


library(keras)


在默认情况下,RStudio会加载CPU版本的TensorFlow。如果没有成功加载CPU版本的TensorFlow, 使用以下指令来下载。


install_tensorflow()


如要为单独用户或桌面系统安装GPU支持的TensorFlow,使用以下指令。


install_tensorflow(gpu=TRUE)


为多重用户安装,请参考这个指南:https://tensorflow.rstudio.com/installation_gpu.html


现在在我们的RStudio里,keras和TensorFlow都安装完毕了。让我们开始构建第一个在R中的神经网络来处理MNIST数据集吧。

 

二、在R中可以使用keras来构建模型的不同类型


以下是可以在R中使用Keras构建的模型列表


  1. 多层感知器(Multi-Layer Perceptrons)

  2. 卷积神经网络(Convoluted Neural Networks)

  3. 递归神经网络(Recurrent Neural Networks)

  4. Skip-Gram模型

  5. 使用预训练的模型(比如VGG16、RESNET等)

  6. 微调预训练的模型


让我们从构建仅有一个隐藏层的简单MLP模型开始,来试着对手写数字进行归类。

 

三、在R中使用MLP将MNIST手写数字进行归类


#loading keras library

library(keras)

#loading the keras inbuilt mnist dataset

data<-dataset_mnist()

#separating train and test file

train_x<-data$train$x

train_y<-data$train$y

test_x<-data$test$x

test_y<-data$test$y

rm(data)

# converting a 2D array into a 1D array for feeding into the MLP and normalising the matrix

train_x <- array(train_x, dim = c(dim(train_x)[1], prod(dim(train_x)[-1]))) / 255

test_x <- array(test_x, dim = c(dim(test_x)[1], prod(dim(test_x)[-1]))) / 255

#converting the target variable to once hot encoded vectors using keras inbuilt function

train_y<-to_categorical(train_y,10)

test_y<-to_categorical(test_y,10)

#defining a keras sequential model

model <- keras_model_sequential()

#defining the model with 1 input layer[784 neurons], 1 hidden layer[784 neurons] with dropout rate 0.4 and 1 output layer[10 neurons]

#i.e number of digits from 0 to 9

model %>%

layer_dense(units = 784, input_shape = 784) %>%

layer_dropout(rate=0.4)%>%

layer_activation(activation = 'relu') %>%

layer_dense(units = 10) %>%

layer_activation(activation = 'softmax')

#compiling the defined model with metric = accuracy and optimiser as adam.

model %>% compile(

loss = 'categorical_crossentropy',

optimizer = 'adam',

metrics = c('accuracy')

)

#fitting the model on the training dataset

model %>% fit(train_x, train_y, epochs = 100, batch_size = 128)

#Evaluating model on the cross validation dataset

loss_and_metrics <- model %>% evaluate(test_x, test_y, batch_size = 128)


以上的代码获得了99.14%的训练精度和96.89%的验证精度。在我的i5处理器上跑这段代码完整训练一次用时13.5秒,而在TITANx GPU上,验证精度可以达到98.44%,训练一次平均用时2秒。

 

四、使用keras来构建MLP模型——R Vs. Python


为了更好地比较,我同样使用Python来实现解决以上的MINIST归类问题。结果不应当有任何差别,因为R会创建一个进程(conda instance)并在其中运行keras。但你仍然可以尝试以下同等的Python代码。


#importing the required libraries for the MLP model

import keras

from keras.models import Sequential

import numpy as np

 

#loading the MNIST dataset from keras

from keras.datasets import mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()

 

#reshaping the x_train, y_train, x_test and y_test to conform to MLP input and output dimensions

x_train=np.reshape(x_train,(x_train.shape[0],-1))/255

x_test=np.reshape(x_test,(x_test.shape[0],-1))/255

 

import pandas as pd

y_train=pd.get_dummies(y_train)

y_test=pd.get_dummies(y_test)

 

#performing one-hot encoding on target variables for train and test

y_train=np.array(y_train)

y_test=np.array(y_test)

 

#defining model with one input layer[784 neurons], 1 hidden layer[784 neurons] with dropout rate 0.4 and 1 output layer [10 #neurons]

model=Sequential()

 

from keras.layers import Dense

 

model.add(Dense(784, input_dim=784, activation='relu'))

keras.layers.core.Dropout(rate=0.4)

model.add(Dense(10,input_dim=784,activation='softmax'))

 

# compiling model using adam optimiser and accuracy as metric

model.compile(loss='categorical_crossentropy', optimizer="adam", metrics=['accuracy'])

# fitting model and performing validation

 

model.fit(x_train,y_train,epochs=50,batch_size=128,validation_data=(x_test,y_test))


以上模型在同样的GPU上达到了98.42%的验证精度。所以,就像我们在一开始猜测的那样,结果是相同的。

 

五、结语


如果这是你用R构建的第一个深度学习模型,我希望你很享受这个过程。使用很简单的代码,你就可以对手写数值进行精确度达到98%的分类。这应该可以给你足够的动力让你在机器学习的领域探索。


如果你已经在Python中使用过keras深度学习框架,那么你会发现R中keras框架的句式和结构跟其在Python中非常相似。事实上,R中的keras安装包创造了一个conda环境而且安装了在该环境下运行keras所需要的所有东西。但是,更让我兴奋的是:看到现在数据科学家们使用R构建有关现实生活的深度学习模型。就像有句话说的一样,竞争永不停歇。


原文发布时间为:2017-08-03 

本文作者:NSS

本文来自云栖社区合作伙伴“数据派THU”,了解相关信息可以关注“数据派THU”微信公众号

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
6月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
640 55
|
4月前
|
机器学习/深度学习 PyTorch TensorFlow
深度学习工具和框架详细指南:PyTorch、TensorFlow、Keras
在深度学习的世界中,PyTorch、TensorFlow和Keras是最受欢迎的工具和框架,它们为研究者和开发者提供了强大且易于使用的接口。在本文中,我们将深入探索这三个框架,涵盖如何用它们实现经典深度学习模型,并通过代码实例详细讲解这些工具的使用方法。
|
6月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
177 3
|
7月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
690 5
|
7月前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
312 3
|
7月前
|
机器学习/深度学习 人工智能 TensorFlow
探索深度学习与计算机视觉的融合:构建高效图像识别系统
探索深度学习与计算机视觉的融合:构建高效图像识别系统
168 0
|
7月前
|
机器学习/深度学习 自然语言处理 语音技术
探索深度学习中的兼容性函数:构建高效注意力机制的基石
探索深度学习中的兼容性函数:构建高效注意力机制的基石
77 0
|
2月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
401 64
计算机视觉五大技术——深度学习在图像处理中的应用
|
5月前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
225 22
|
6月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
449 6

热门文章

最新文章