非平衡数据集的机器学习常用处理方法-阿里云开发者社区

开发者社区> 傲海> 正文

非平衡数据集的机器学习常用处理方法

简介: 定义:不平衡数据集:在分类等问题中,正负样本,或者各个类别的样本数目不一致。 例子:在人脸检测中,比如训练库有10万张人脸图像,其中9万没有包含人脸,1万包含人脸,这个数据集就是典型的不平衡数据集。 直观的影响就是,用这些不平衡的数据训练出来的模型,其预测结果偏向于训练数据中数据比较多的那一类,在人脸检测的例子中,就是检测器的检测结果大部分都偏向于没有检测到人脸图像。 另外一个不平衡数据集,就
+关注继续查看

定义:不平衡数据集:在分类等问题中,正负样本,或者各个类别的样本数目不一致。

例子:在人脸检测中,比如训练库有10万张人脸图像,其中9万没有包含人脸,1万包含人脸,这个数据集就是典型的不平衡数据集。 
直观的影响就是,用这些不平衡的数据训练出来的模型,其预测结果偏向于训练数据中数据比较多的那一类,在人脸检测的例子中,就是检测器的检测结果大部分都偏向于没有检测到人脸图像。 
另外一个不平衡数据集,就是信用卡欺诈交易,如果平均的抽取数据,则大部分的数据都是非欺诈交易,只有非常少的部分数据是欺诈交易

影响:不平衡的数据集上做训练和测试,其得到的准确率是虚高的,比如在不平衡数据中,正负样本的比例为9:1时,当它的精度为90%时,我们很有理由怀疑它将所有的类别都判断为数据多的那一类。

解决方法:8种

1.收集更多的数据:

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
算法学习之路|用C++刷算法会用到的STL(二)——set
用C++刷算法会用到的STL(二)——set
2378 0
Flink批处理优化器之数据属性
在一段时间之前我们已介绍过IP(Interesting Property)对于优化器的意义以及它将对优化器的优化决策产生的影响。本篇我们将介绍Flink的批处理优化器中涉及到的所有的IP,我们将其统称为数据属性。
1014 0
EDA:最简单的自然语言处理数据增广方法
数据增广常用于计算机视觉。
166 0
android 屏蔽home 处理home
引用:http://my.oschina.net/chen106106/blog/51701 package com.test.qiao;      import android.app.Activity;   import android.
632 0
独家 | ARIMA/Sarima与LSTM的时间序列数据集成学习(附链接)
本文探讨了简单的ARIMA/Sarima与LSTM的时间序列数据集成学习方面的问题。
1536 0
独家 | 关于NLP和机器学习之文本处理的你需要知道的一切(附学习资源)
本文将介绍自然语言处理和机器学习中常见的文本预处理方法。
1811 0
+关注
傲海
著有《机器学习实践应用》,阿里云机器学习PAI产品经理,个人微信公众号“凡人机器学习”。
302
文章
10
问答
文章排行榜
最热
最新
相关电子书
更多
文娱运维技术
立即下载
《SaaS模式云原生数据仓库应用场景实践》
立即下载
《看见新力量:二》电子书
立即下载