《中国人工智能学会通讯》——12.2 大数据环境下序列模式挖掘及应用

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 本节书摘来自CCAI《中国人工智能学会通讯》一书中的第12章,第12.2节, 更多章节内容可以访问云栖社区“CCAI”公众号查看。

12.2 大数据环境下序列模式挖掘及应用

模式发现问题诞生于 1993 年[1] ,与分类、聚类和异常点检测并称为数据挖掘四大问题[2] 。它指的是从数据库找出频繁共现的“项”,被称为频繁模式。模式发现问题在数据挖掘领域地位重要,有大量关于模式发现的论文发表在重要数据挖掘、数据库会议。Google Scholar 记录的 Agrawal 等人[1]提出的经典模式发现算法 Apriori 的论文单篇 , 被引用次数近 1.8 万次,已成为数据挖掘领域引用最多的论文之一。

序列模式 (Sequential pattern) [3] (及其扩展情景模式 (Episode) [4] )是引入了时间关系和约束的数据模式,它指的是从时序数据中挖掘频繁出现的子序列。这类模式因为蕴含了时间维度的补充信息,为推荐或者预测提供了潜在的帮助[2] 。序列模式挖掘曾成功应用于网络挖掘[5-6] 、设备故障检测 [7] 、软件 bug 检测[8] 、时空数据分析 [9] 、股票趋势预测 [10] 、化学与生物模式[11-12]和新闻分析[13-14]等。由于其广泛的应用,它逐渐成为数据挖掘领域中一个专门的研究主题。

由于序列模式挖掘是从频繁模式挖掘[1]演化而来,因此 Agrawal 和 Srikant [3] 最初提出该问题也是为了挖掘用户购物数据中行为模式来辅助决策。这个挖掘问题的问题描述如下:

设 I={I 1 , I 2 , …, I m } 是所有项的集合。给定一个序列集合 D,其中任意一条序列 S i 由一个元素列表组成,每一个元素则由 I 中的项组成,以及一个用户指定的最小支持度阈值 min_sup,序列模式挖掘是指从D中挖掘出现频率不低于min_sup的子序列,它们被称为频繁序列模式。

如表 1 所示的一个序列集合中,字母代表项,括号中的项视为无序,若设置最小支持度 min_sup为 2,子序列〈(bc)a〉是一个频繁序列模式,它共出现了 2 次,分别位于 s 1 和 s 2 中。image
频繁情景模式挖掘,作为序列模式挖掘的扩展,则考虑的是从一条长事件序列中挖掘频繁的子序列,其问题描述如下:

设 E={E 1 , E 2 , …, E m } 是所有事件的集合。情景模式发现问题是指从一条单一的事件长序列 S 中挖掘出现频率不小于 min_sup 的子序列,min_sup 是用户指定的最小支持度阈值参数。其中,S 中的任意一个事件集合均由 E 的事件组成。挖掘出来的频繁子序列被称作频繁情景模式。

如图 1 所示的一条事件序列中,字母代表事件,数字代表事件发生的时间,若设置最小支持度 min_sup 为 3,子序列〈A, B〉是一个频繁情景模式,它共出现了 3 次,在序列中用虚线矩形框标注。image
由于序列模式挖掘(及其扩展频繁情景模式挖掘)和频繁模式挖掘的相关性,其算法多数也是由频繁模式挖掘算法改进而来,这些算法大致可以分为基于 Apriori 的算法[3]和模式增长算法[15]两类。其中,基于 Apriori 思想的算法主要思想是通过生成候选集,以及扫描数据库进行逐层挖掘。这些算法通常还基于 Apriroi 算法的支持度的向下封闭性(downward closure)进行剪枝,即任何不频繁模式的超模式也不会频繁。但是在频繁情景挖掘问题中,这种性质不一定适用[16] 。这些算法虽然可以使用剪枝技术提升效率,但是它们实际的缺点是生成了大量的候选序列并需要重复扫描数据库对每一个候选序列计算支持度,这样的迭代过程使得挖掘效率低下。为了缓解这些问题,基于模式增长的算法开始涌现。它们大多采用了分治思想,以当前的频繁序列模式作为前缀将原始序列分割成若干个投影数据库(projected databases),并在这些投影区域内进行挖掘。相较于前一大类算法,基于模式增长的方法的好处是不需要生成序列的候选集合,并且缩小了数据库扫描的范围,在性能上具有一定的优势。

近年来,为了能够处理持续快速增长的大数据,序列模式挖掘(及其扩展频繁情景模式挖掘)在并行、增量和近似算法上也取得了显著进步。本文将从算法角度综述主要的序列模式挖掘(以及频繁情景模式挖掘)算法,并且回顾适用于大数据的序列模式挖掘(频繁情景模式挖掘)代表性算法。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
11天前
|
机器学习/深度学习 人工智能 运维
人工智能在事件管理中的应用
人工智能在事件管理中的应用
59 21
|
1月前
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在现代医疗中的革新应用
本文深入探讨了人工智能(AI)技术在医疗领域的最新进展,重点分析了AI如何通过提高诊断准确性、个性化治疗方案的制定以及优化患者管理流程来革新现代医疗。文章还讨论了AI技术面临的挑战和未来发展趋势,为读者提供了一个全面了解AI在医疗领域应用的视角。
76 11
|
1月前
|
机器学习/深度学习 数据采集 人工智能
深入探索人工智能与大数据的融合之路
本文旨在探讨人工智能(AI)与大数据技术如何相互促进,共同推动现代科技的进步。通过分析两者结合的必要性、挑战以及未来趋势,为读者提供一个全面的视角,理解这一领域内的最新发展动态及其对行业的影响。文章不仅回顾了历史背景,还展望了未来可能带来的变革,并提出了几点建议以促进更高效的技术整合。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能在医疗诊断中的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战及未来发展趋势。通过分析AI如何辅助医生进行疾病诊断,提高诊断效率和准确性,以及其在个性化医疗中的潜力,文章揭示了AI技术对医疗行业变革的推动作用。同时,也指出了数据隐私、算法偏见等伦理问题,并展望了AI与人类医生协同工作的前景。 ####
111 0
|
3天前
|
机器学习/深度学习 人工智能 分布式计算
我的阿里云社区年度总结报告:Python、人工智能与大数据领域的探索之旅
我的阿里云社区年度总结报告:Python、人工智能与大数据领域的探索之旅
69 35
|
16天前
|
机器学习/深度学习 数据采集 人工智能
人工智能在农业中的应用:智慧农业的未来
人工智能在农业中的应用:智慧农业的未来
45 11
|
1月前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
30天前
|
数据采集 人工智能 移动开发
盘点人工智能在医疗诊断领域的应用
人工智能在医疗诊断领域的应用广泛,包括医学影像诊断、疾病预测与风险评估、病理诊断、药物研发、医疗机器人、远程医疗诊断和智能辅助诊断系统等。这些应用提高了诊断的准确性和效率,改善了患者的治疗效果和生活质量。然而,数据质量和安全性、AI系统的透明度等问题仍需关注和解决。
215 10
|
1月前
|
机器学习/深度学习 人工智能 算法
探索人工智能在医疗诊断中的应用
本文深入探讨了人工智能(AI)技术在医疗诊断领域的革新性应用,通过分析AI如何助力提高诊断准确性、效率以及个性化治疗方案的制定,揭示了AI技术为现代医学带来的巨大潜力和挑战。文章还展望了AI在未来医疗中的发展趋势,强调了跨学科合作的重要性。 ###
104 9
|
1月前
|
机器学习/深度学习 数据采集 人工智能
深度探索:人工智能在医疗影像诊断中的应用与挑战####
本文旨在深入剖析人工智能(AI)技术在医疗影像诊断领域的最新进展、核心优势、面临的挑战及未来发展趋势。通过综合分析当前AI算法在提高诊断准确性、效率及可解释性方面的贡献,结合具体案例,揭示其在临床实践中的实际价值与潜在局限。文章还展望了AI如何与其他先进技术融合,以推动医疗影像学迈向更高层次的智能化时代。 ####

热门文章

最新文章