《中国人工智能学会通讯》——2.33 创造性抽象思维(Creative Abstract Thought)

简介: 本节书摘来自CCAI《中国人工智能学会通讯》一书中的第2章,第2.33节, 更多章节内容可以访问云栖社区“CCAI”公众号查看。

2.33 创造性抽象思维(Creative Abstract Thought)

除了了解简单的概念,深度学习还要把握因果结构的各个方面——理解想法是如何相互配合来引导事件发生或是以时间为主线讲述一个故事——并能够基于这些理解创建事物。基于来自于DeepMind 神经图灵机和 Facebook 记忆网络的基本思想,深度学习和新记忆架构的结合在这个方向会大有前途。这些结构为深度神经网络中的每个节点提供了记忆的简单接口。

Kumar 和 Socher 的动态记忆网络改进了原有的记忆网络,能够更好地支持关注(attention)和序列理解。与原来的网络一样,该系统可以阅读故事,并回答关于故事的问题,隐式地学习 20 种推理,比如演绎、归纳、时间推理,以及路径寻找。从来没有对任何这种推理进行编程。Weston 等人最近开发的端到端记忆网络加入了每个输出符号多计算跳跃的能力,扩展了建模能力和表达能力,可以捕获乱序的、长依赖性,以及无序集的事物,进一步提高了这种任务的精确性。

程序本身当然也是数据,它们当然会使用复杂的因果关系、结构、语法、类序列化性质,所以编程在这种方式上已经成熟。去年,神经图灵机使得深度学习编程成为可能。今年,Grefenstette 等人展示了程序如何被转换或者从样本输出中获得产出,比神经图灵机的效率高了许多。它使用的是一种新类型的基于记忆的递归神经网络(RNNs),节点只需访问不同的数据结构,比如堆栈和队列。DeepMind 的 Read 和 de Freitas 最近也展示了他们的神经程序员解释器如何表示可以控制高层次和特定领域功能的低层次程序。

另一个精通理解上下文时间,并用此创建新产品的例子是,今年开发的一个尚未成熟但具有创意的视频摘要功能。首尔国立大学的 Park 和 Kim 开发了一种新架构,称为连贯递归卷积网络(coherentrecurrent convolutional network),将它用来从图像序列中生成新的流动的文本故事。

另一个包括抽象思维中因果关系理解,假设和创造性的重要形式是科学假设。塔夫茨大学的一个团队将遗传算法和遗传途径模拟结合开发了一套系统,它是第一个发现科学理论的人工智能系统,它发现为什么扁形虫身体能够如此容易的再生。在短短几天内它就发现了科学家一个世纪都没能发现的理论。这给那些询问“我们为什么想要让 AI 首先要有求知欲”的人一个响亮的回答。

相关文章
|
4月前
|
人工智能 安全 Anolis
中兴通讯分论坛邀您探讨 AI 时代下 OS 的安全能力 | 2024 龙蜥大会
操作系统如何提供符合场景要求的安全能力,构建更加安全可信的计算环境。
|
5月前
|
人工智能
人工智能|思维链
### **思维链提升大模型推理能力** #### **简介** 示例数学题显示,从直觉解答到需推理求解的转变,如同大模型处理复杂问题时,若辅以推理链提示,性能更佳。 #### **应用场景** 适用于需深度分析、非直观解答的挑战性情境。 #### **实战案例** 对比直接询问剩余苹果数量,附加推理步骤使模型准确回应:“从10个苹果减去赠予的4个,加购5个后减1个食用,最终剩余10个”。 #### **总结** 掌握思维链概念,识别其适用场合,精炼提示技巧,以优化大模型解答质量。
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
构建未来:人工智能在创造性问题解决中的应用
【4月更文挑战第14天】 随着人工智能(AI)技术的不断进步,其在模仿和增强人类创造力方面的潜力正逐渐被挖掘。本文章探讨了AI如何通过机器学习、深度学习和自然语言处理等技术,在音乐创作、艺术设计和复杂问题求解等领域中展现出其独特的创新能力。我们分析了当前AI在创造性任务中所采用的方法,并讨论了这些技术如何推动新领域的发展,同时指出了目前存在的挑战和未来的发展方向。
|
7月前
|
人工智能 算法 数据挖掘
构建未来:人工智能在创造性问题解决中的应用
【4月更文挑战第7天】 随着技术的不断进步,人工智能(AI)已经从简单的数据处理和模式识别演变为能够处理复杂任务的高级系统。本文探讨了AI如何通过模仿人类的创造力来解决创新问题,以及这种技术如何改变我们对未来工作和社会的看法。我们将深入研究AI在艺术创作、工程设计和科学研究中的应用,并讨论这些系统如何推动新知识的发现和新产品的开发。
|
7月前
|
机器学习/深度学习 人工智能 算法
构建未来:人工智能在创造性问题解决中的应用
【4月更文挑战第29天】 随着技术的不断进步,人工智能(AI)已经从简单的数据处理和模式识别演变为能够进行复杂决策和创新的领域。本文将探讨AI如何通过模仿人类的认知过程来解决创造性问题,以及这一技术如何被应用于艺术创作、工程设计和科学研究等多领域中。我们将分析最新的研究进展,展示AI如何在这些领域中不仅辅助人类工作,而且在某些情况下超越人类的创造力。
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
构建未来:人工智能在创造性问题解决中的应用
【4月更文挑战第6天】本文探讨了人工智能(AI)在解决复杂问题中的创新应用,重点分析了AI如何通过模仿人类认知过程提出并实施解决方案。通过深度学习、神经网络和自然语言处理等技术,AI系统能够学习和理解问题的本质,生成新颖的解决方案,并在多个领域如医疗、金融和教育中展示其潜力。文章还讨论了AI在创造性问题解决中面临的挑战及其对未来的影响。
|
7月前
|
机器学习/深度学习 人工智能 算法
构建未来:人工智能在创造性问题解决中的应用
【2月更文挑战第30天】 本文深入探讨了人工智能(AI)技术如何被应用于解决需要高度创造性的问题。不同于传统的摘要形式,这里我们将通过一个具体案例——AI在设计领域中的应用——来揭示AI如何模仿、增强甚至超越人类的创造力。文章还将讨论AI在处理开放式问题时所面临的挑战以及未来的发展前景。
|
7月前
|
机器学习/深度学习 人工智能 搜索推荐
生成未来——人工智能如何快速的让我们的思维变成逻辑代码
生成未来——人工智能如何快速的让我们的思维变成逻辑代码
75 0
|
机器学习/深度学习 人工智能 自然语言处理
搜狗翻宝Pro机再次开挂,智能翻译硬件成中国人工智能的新风口
第五届世界互联网大会正在如火如荼的举行。
搜狗翻宝Pro机再次开挂,智能翻译硬件成中国人工智能的新风口
|
机器学习/深度学习 人工智能 自然语言处理
阳过→阳康,数据里的时代侧影;谷歌慌了!看各公司如何应对ChatGPT;两份优质AI年报;本周技术高光时刻 | ShowMeAI每周通讯 #003-12.24
这是ShowMeAI每周通讯的第3期。本期内容关键词:新冠、ChatGPT、2022 AI 报告、腾讯·绝悟、阿里·AliceMind、小红书·全站智投、OpenAI·Point-E、Google·CALM、Wayve·MILE、AI2·MemPrompt、Stanford x MosaicML·PubMed GPT、腾讯全员大会、特斯拉裁员、图森未来裁员、AI 应用与工具大全。
552 0
阳过→阳康,数据里的时代侧影;谷歌慌了!看各公司如何应对ChatGPT;两份优质AI年报;本周技术高光时刻 | ShowMeAI每周通讯 #003-12.24