Facebook开源PyTorch版本fairseq翻译模型,训练速度提高50%

简介: FAIR的开源序列到序列(sequence-to-sequence)引擎现在可以在PyTorch使用了。FAIR今天发布了fairseq-py,这是一个用PyTorch实现的卷积seq2seq模型。fairseq-py是语言翻译以及其他 seq2seq 的NLP任务的一个很好的模型,新的工具包比以前的更高效率:生成翻译的速度比以前的提高了80%,训练速度提高了50%。


image

今年5月10日,Facebook AI 研究实验室(FAIR)发布了一项使用创新性的、基于卷积神经网络的方法来进行语言翻译的最新成果。Facebook 称,该研究取得了截止目前最高准确度,并且速度是基于循环神经网络(RNN)系统的9倍(谷歌的机器翻译系统使用的就是这一技术)。

今天开源的是一个PyTorch版本的fairseq。这个重新实现的原作者是Sergey Edunov,Myle Ott和Sam Gross。该工具包实现了 Convolutional Sequence to Sequence Learning(https://arxiv.org/abs/1705.03122 )中描述的完全卷积模型(fully convolutional model),在单个机器上实现多GPU训练,并在CPU和GPU上实现快速 beam search 生成。我们提供英语到法语和英语到德语翻译的预训练模型。


引用

如果要在论文中使用这些代码,请按如下格式引用:


@inproceedings{gehring2017convs2s,
  author    = {Gehring, Jonas, and Auli, Michael and Grangier, David and Yarats, Denis and Dauphin, Yann N},
  title     = "{Convolutional Sequence to Sequence Learning}",
  booktitle = {Proc. of ICML},
  year      = 2017,
}

要求和安装步骤

  • 运行macOS或Linux的计算机
  • 为了训练新模型,你还需要一个NVIDIA GPU和NCCL
  • Python 3.6
  • PyTorch安装

目前,Fairseq-py需要GitHub库里的PyTorch。有多种安装方式,我们建议使用Miniconda3并按照说明安装:

conda install gcc numpy cudnn nccl
conda install magma-cuda80 -c soumith
pip install cmake
pip install cffi

git clone https://github.com/pytorch/pytorch.git
cd pytorch
git reset --hard a03e5cb40938b6b3f3e6dbddf9cff8afdff72d1b
git submodule update --init
pip install -r requirements.txt

NO_DISTRIBUTED=1 python setup.py install

Clone GitHub 存储库并运行以下命令安装fairseq-py:

pip install -r requirements.txt
python setup.py build
python setup.py develop

快速开始

以下命令行工具可用:

  • python preprocess.py:数据预处理:构建词汇和二进制训练数据
  • python train.py:在一个或多个GPU上训练新模型
  • python generate.py:用训练好的模型翻译预处理的数据
  • python generate.py -i:使用训练好的模型翻译原始文本
  • python score.py:根据参考翻译对生成的翻译进行BLEU评分

评估预训练的模型

首先,下载一个预训练的模型及其词汇:


$ curl https://s3.amazonaws.com/fairseq-py/models/wmt14.en-fr.fconv-py.tar.bz2 | tar xvjf -

该模型使用字节对编码(BPE)词汇表,因此我们必须将该编码应用于源文本才能进行翻译。这可以通过使用wmt14.en-fr.fconv-cuda / bpecodes文件的apply_bpe.py脚本完成。@@ 用作连续标记,用 sed s / @@ // g 或将 --remove-bpe 标志传递给generate.py,原始文本可以很容易地恢复。在BPE之前,输入文本需要使用mosesdecoder中的tokenizer.perl进行标记化。

让我们使用python generate.py -i来生成翻译。在这里,我们使用beam的大小是5:


$ MODEL_DIR=wmt14.en-fr.fconv-py
$ python generate.py -i \
 --path $MODEL_DIR/model.pt $MODEL_DIR \
 --beam 5
| [en] dictionary: 44206 types
| [fr] dictionary: 44463 types
| model fconv_wmt_en_fr
| loaded checkpoint /private/home/edunov/wmt14.en-fr.fconv-py/model.pt (epoch 37)
> Why is it rare to discover new marine mam@@ mal species ?
S       Why is it rare to discover new marine mam@@ mal species ?
O       Why is it rare to discover new marine mam@@ mal species ?
H       -0.08662842959165573    Pourquoi est-il rare de découvrir de nouvelles espèces de mammifères marins ?
A       0 1 3 3 5 6 6 10 8 8 8 11 12

生成脚本产生四种类型的输出:以S为前缀的行显示了应用词汇表后提供的源语句(source sentence); O是原始来源句的副本(original source sentence); H是平均 log-likelihood以外的假设(hypothesis); 而A是假设中每个单词的注意力最大值( attention maxima),包括文本中省略的句末标记。

下面是预训练模型列表。

训练一个新模型

数据预处理

Fairseq-py源码分发包含了一个用于IWSLT 2014德语 - 英语语料库的预处理脚本示例。预处理和二值化数据如下:


$ cd data/
$ bash prepare-iwslt14.sh
$ cd ..
$ TEXT=data/iwslt14.tokenized.de-en
$ python preprocess.py --source-lang de --target-lang en \
  --trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \
  --thresholdtgt 3 --thresholdsrc 3 --destdir data-bin/iwslt14.tokenized.de-en

这将会将可用于模型训练的二值化数据写入 data-bin/iwslt14.tokenized.de-en。

训练

使用python train.py来训练一个新模型。这里有几个适用于IWSLT 2014数据集的示例设置:


$ mkdir -p checkpoints/fconv
$ CUDA_VISIBLE_DEVICES=0 python train.py data-bin/iwslt14.tokenized.de-en \
  --lr 0.25 --clip-norm 0.1 --dropout 0.2 --max-tokens 4000 \
  --arch fconv_iwslt_de_en --save-dir checkpoints/fconv

默认情况下,python train.py将使用机器上的所有可用GPU。使用CUDA_VISIBLE_DEVICES 环境变量选择特定的GPU和/或更改将要使用的GPU设备的数量。

另请注意,batch大小是根据每个batch的最大token数(--max-tokens)来指定的。你可能需要使用较小的值,具体取决于系统上可用的GPU内存。

生成

一旦模型训练好,就可以使用python generate.py(二进制数据)或python generate.py -i(原始文本)生成翻译:


$ python generate.py data-bin/iwslt14.tokenized.de-en \
  --path checkpoints/fconv/checkpoint_best.pt \
  --batch-size 128 --beam 5
  | [de] dictionary: 35475 types
  | [en] dictionary: 24739 types
  | data-bin/iwslt14.tokenized.de-en test 6750 examples
  | model fconv
  | loaded checkpoint trainings/fconv/checkpoint_best.pt
  S-721   danke .
  T-721   thank you .
  ...

如果要仅使用CPU生成翻译,请使用--cpu flag。可以使用--remove-bpe flag 来删除BPE连续标记。

预训练模型

我们提供以下预训练的完全卷积序列到序列模型:
wmt14.en-fr.fconv-py.tar.bz2:用于WMT14英语 - 法语的预训练模型,包括词汇
wmt14.en-de.fconv-py.tar.bz2:用于WMT14英语 - 德语的预训练模型,包括词汇

此外,我们还提供了上述模型的预处理和二值化测试集:
wmt14.en-fr.newstest2014.tar.bz2:WMT14英语 - 法语的newstest2014测试集
wmt14.en-fr.ntst1213.tar.bz2:WMT14英语 - 法语的newstest2012和newstest2013测试集
wmt14.en-de.newstest2014.tar.bz2:WMT14英语 - 德语的newstest2014测试集

生成二值化测试集可以像下面这样以batch的模式运行,例如,在GTX-1080ti的英语-法语:


$ curl https://s3.amazonaws.com/fairseq-py/models/wmt14.en-fr.fconv-py.tar.bz2 | tar xvjf - -C data-bin
$ curl https://s3.amazonaws.com/fairseq-py/data/wmt14.en-fr.newstest2014.tar.bz2 | tar xvjf - -C data-bin
$ python generate.py data-bin/wmt14.en-fr.newstest2014  \
  --path data-bin/wmt14.en-fr.fconv-py/model.pt \
  --beam 5 --batch-size 128 --remove-bpe | tee /tmp/gen.out
...
| Translated 3003 sentences (95451 tokens) in 81.3s (1174.33 tokens/s)
| Generate test with beam=5: BLEU4 = 40.23, 67.5/46.4/33.8/25.0 (BP=0.997, ratio=1.003, syslen=80963, reflen=81194)

# Scoring with score.py:
$ grep ^H /tmp/gen.out | cut -f3- > /tmp/gen.out.sys
$ grep ^T /tmp/gen.out | cut -f2- > /tmp/gen.out.ref
$ python score.py --sys /tmp/gen.out.sys --ref /tmp/gen.out.ref
BLEU4 = 40.23, 67.5/46.4/33.8/25.0 (BP=0.997, ratio=1.003, syslen=80963, reflen=81194)

原文发布时间为:2017-09-19
编译:neko
本文来自云栖社区合作伙伴新智元,了解相关信息可以关注“AI_era”微信公众号
原文链接

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
17天前
|
机器学习/深度学习 数据采集 PyTorch
使用 PyTorch 创建的多步时间序列预测的 Encoder-Decoder 模型
本文提供了一个用于解决 Kaggle 时间序列预测任务的 encoder-decoder 模型,并介绍了获得前 10% 结果所涉及的步骤。
15 0
|
28天前
|
机器学习/深度学习 算法 PyTorch
Pytorch实现线性回归模型
在机器学习和深度学习领域,线性回归是一种基本且广泛应用的算法,它简单易懂但功能强大,常作为更复杂模型的基础。使用PyTorch实现线性回归,不仅帮助初学者理解模型概念,还为探索高级模型奠定了基础。代码示例中,`creat_data()` 函数生成线性回归数据,包括噪声,`linear_regression()` 定义了线性模型,`square_loss()` 计算损失,而 `sgd()` 实现了梯度下降优化。
|
28天前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch中的模型创建(一)
最全最详细的PyTorch神经网络创建
|
28天前
|
机器学习/深度学习 PyTorch 算法框架/工具
|
6天前
|
机器学习/深度学习 PyTorch TensorFlow
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。
在深度学习中,数据增强是一种常用的技术,用于通过增加训练数据的多样性来提高模型的泛化能力。`albumentations`是一个强大的Python库,用于图像增强,支持多种图像变换操作,并且可以与深度学习框架(如PyTorch、TensorFlow等)无缝集成。
|
1月前
|
机器学习/深度学习 自然语言处理 PyTorch
【从零开始学习深度学习】48.Pytorch_NLP实战案例:如何使用预训练的词向量模型求近义词和类比词
【从零开始学习深度学习】48.Pytorch_NLP实战案例:如何使用预训练的词向量模型求近义词和类比词
|
1月前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】44. 图像增广的几种常用方式并使用图像增广训练模型【Pytorch】
【从零开始学习深度学习】44. 图像增广的几种常用方式并使用图像增广训练模型【Pytorch】
|
11月前
|
机器学习/深度学习 算法 决策智能
【重磅开源】Facebook开源 Nevergrad:一种用于无梯度优化的开源工具
【重磅开源】Facebook开源 Nevergrad:一种用于无梯度优化的开源工具
136 0
|
缓存 数据可视化 测试技术
开源多年后,Facebook这个调试工具,再登Github热门榜
让许多工程师合作开发大型应用大多会面临一个挑战,通常没有一个人知道每个模块是如何工作的,这种技能会让开发新功能、调查Bug或优化性能变得困难,为了解决这个问题,Facebook创建并开源了Flipper,一个可扩展的跨平台的调试工具,用来调试 iOS 和 Android 应用。近日又双叒登上了Github热榜。
|
前端开发 JavaScript 测试技术
Facebook 开源可扩展文本编辑器 Lexical
Meta(原 Facebook)近日开源可扩展文本编辑器 Lexical,源代码托管在 GitHub 上采用 MIT 许可证。
477 0
Facebook 开源可扩展文本编辑器 Lexical