《数学与泛型编程:高效编程的奥秘》一2.1 埃及乘法算法

简介: 本节书摘来自华章出版社《数学与泛型编程:高效编程的奥秘》一 书中的第2章,第2.1节,作者:丹尼尔E.罗斯(Daniel E. Rose),更多章节内容可以访问云栖社区“华章计算机”公众号查看。

2.1 埃及乘法算法

与所有的古文明一样,埃及的计数系统也没有按位置计数这一概念,而且无法表示0。于是,乘法计算起来就特别困难,只有少数受过训练的专家才会做。(你可以想象一下:如果自己只能像使用罗马数字那样来做运算,而且要计算的数字又很大,那么算起来是相当困难的。)
怎样来定义乘法呢?宽泛地说,我们可以认为乘法就是“把某物多次加到它自己上面”,如果说得严谨一些,那么可以分两种情况来定义:一种情况是乘以1,另一种情况是乘以一个大于1的数。
我们将乘以1的乘法运算,定义如下:
1a = a(2.1)
接下来需要定义另一种情况,也就是怎样根据某数的n倍来计算其n+1倍。有些读者或许已经发现这是一个归纳的过程,本书稍后会以更为正规的形式来使用归纳法。
(n + 1)a = na + a(2.2)
有一种办法可以计算n与a的乘积,那就是把n个a连加起来。然而这种办法对于较大的数字来说相当乏味,因为总共要计算n-1次加法才行。此算法可以用C++代码表示为:

screenshot

上面这个函数中的两行代码分别与等式(2.1)及等式(2.2)相对应。和古埃及人计算乘法时的情况一样,a与n都必须是正数。
阿姆士所描述的乘法算法,古希腊人将其称为“埃及乘法”(Egyptian multiplication),而现在有很多人则把它叫做“俄罗斯农夫算法”(Russian Peasant Algorithm)。这种算法所依据的原理是:
4a =((a + a)+ a)+ a
=(a + a)+(a + a)
这个原理是根据加法结合律推算出来的:
a +(b + c)=(a + b)+ c
如果采用这个办法,那么只需把a + a的值计算一次就行了,这样可以降低加法运算的次数。
埃及乘法算法的思路是:反复地将n减半,并将a加倍,同时求出a的各种倍数,这些倍数与a的比值都是2的整数次幂。在那个时代,算法并不是用a或n这样的变量来描述的,而是以具体的数字举例,然后说:“同样的操作还可以运用在其他数字上面”。阿姆士自然也不例外,他以41×59(也就是说n = 41,a = 59)为例,演示了怎样通过下面这种表格来执行该算法:
1 √ 59
2 118
4 236
8 √ 472
16 944
32 √ 1888
表格左边那一列的数字都是2的整数次幂,而对于右边那一列来说,其中的每一个数字都是它上方那个数字的两倍(之所以要采用这种反复翻倍的办法来列表,是因为把同一个数字加到它自己上面计算起来要相对容易一些)。如果用二进制的形式来表示41这个数,那么值为1的那些二进制位就可以与表格中勾选的那些行分别对应起来。于是,这张表格实际上就相当于下面这个算式:
41×59 =(1×59)+(8×59)+(32×59)
该等式的右侧出现了几个59的倍数值,这些倍数值都可以通过对59进行适当的翻倍而计算出来。
由于该算法在将n减半的时候需要判断n是奇数还是偶数,因此尽管没有直接的证据,但我们依然能够推测出:古埃及人已经知道了奇数和偶数之间的区别。因为古希腊人宣称他们是从埃及人那里学到数学的,所以这一点是可以肯定的。如果把埃及人定义奇数和偶数的办法表示成现代的数学记号,那就是:
screenshot

此外,我们还要依赖下面这个关系式:
odd(n) half(n)= half(n-1)
现在,就可以用C++代码把埃及乘法算法实现出来了:
screenshot

odd(x)函数可以通过判断x的最低有效位来实现,而half(x)函数则可以通过对x右移来实现:
screenshot
multiply1函数要执行多少次加法呢?每次调用该函数时,它都要执行a + a语句中的那个加法运算,而由于我们在对n减半的过程中会递归地调用该函数,因此总共要调用log n次。此外,有些时候还需要执行result + a语句中的那个加法运算,于是总的加法次数就是:

# +(n)= ?log n? +(v(n)-1)

其中的v(n)表示在n的二进制形式中有多少个值为1的二进制位,这个数量也称为种群计数(population count、pop count)。至此,我们已经把一个复杂度为O(n)的算法,优化成了复杂度为O(log n)的算法。
这个算法总是最优的吗?其实并不是这样。比方说,如果要计算某数与15的积,那么按照刚才的公式,总共需要执行的加法次数就是:

# +(15)= 3 + 4-1 = 6

然而实际上只需要像下面这样,执行5次加法就够了:
screenshot

上面这种连加操作称为加法链(addition chain)。我们刚才找到了15这个数字的最优加法链(optimal addition chain)。尽管阿姆士所记录的算法在某些情况下并不是最优的,但它毕竟可以很好地应对许多数字。
习题2.1 对于每一个小于100的正整数n来说,寻找其最优加法链。
在阅读这部分内容的时候,你可能会发现,如果第一个数比第二个数要大,那么把两者交换之后再进行运算应该会更快一些(例如计算3×15,要比计算15×3更为容易)。确实是这样,而且古埃及人也知道这一点。但笔者此处并不打算把这个优化技巧运用到算法中,因为我们将要在第7章对算法进行泛化,使它不仅可以用整数当参数,而且还可以用整数之外的其他类型做参数,到了那个时候,参数之间的顺序就会变得很重要了。

相关文章
|
8月前
|
存储 安全 算法
|
8月前
|
人工智能 算法 测试技术
【数学】【排序】【C++算法】3027人员站位的方案数
【数学】【排序】【C++算法】3027人员站位的方案数
|
8月前
|
存储 算法 Serverless
【C/C++ 数据结构】深入探索数据结构中算法复杂度:从C++和数学的视角
【C/C++ 数据结构】深入探索数据结构中算法复杂度:从C++和数学的视角
85 0
|
4天前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
27 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
3月前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
7月前
|
算法 Java Go
斐波那契数列是一个非常经典的数学问题,在计算机科学中也经常被用作算法设计和分析的例子。
斐波那契数列是一个非常经典的数学问题,在计算机科学中也经常被用作算法设计和分析的例子。
|
6月前
|
算法 安全 网络安全
支付系统,网络安全06----支付安全---,机密性,加密算法,目前最流行的加密算法,AES加密算法,目前最流行的非对称加密算法RSA,对称加密和非对称加密的优缺点,非对称加密是基于非常复杂的数学算法
支付系统,网络安全06----支付安全---,机密性,加密算法,目前最流行的加密算法,AES加密算法,目前最流行的非对称加密算法RSA,对称加密和非对称加密的优缺点,非对称加密是基于非常复杂的数学算法
|
7月前
|
存储 算法 Python
技术心得记录:大整数算法【10】Comba乘法(实现)
技术心得记录:大整数算法【10】Comba乘法(实现)
44 0
|
7月前
|
算法 数据挖掘 定位技术
算法必备数学基础:图论方法由浅入深实践与应用
算法必备数学基础:图论方法由浅入深实践与应用
|
8月前
|
算法
数学算法总结(面积、博弈)
数学算法总结(面积、博弈)

热门文章

最新文章