《Web安全之机器学习入门》一 3.3 特征提取

简介: 本节书摘来自华章出版社《Web安全之机器学习入门》一 书中的第3章,第3.3节,作者:刘焱,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

3.3 特征提取

机器学习中,特征提取被认为是个体力活,有人形象地称为“特征工程”,可见其工作量之大。特征提取中数字型和文本型特征的提取最为常见。

3.3.1 数字型特征提取

数字型特征可以直接作为特征,但是对于一个多维的特征,某一个特征的取值范围特别大,很可能导致其他特征对结果的影响被忽略,这时候我们需要对数字型特征进行预处理,常见的预处理方式有以下几种。
1.标准化:

>>> from sklearn import preprocessing
>>> import numpy as np
>>> X = np.array([[ 1., -1.,  2.],
...               [ 2.,  0.,  0.],
...               [ 0.,  1., -1.]])
>>> X_scaled = preprocessing.scale(X)
>>> X_scaled
array([[ 0.  ..., -1.22...,  1.33...],
       [ 1.22...,  0.  ..., -0.26...],
       [-1.22...,  1.22..., -1.06...]])

2.正则化:

>>> X = [[ 1., -1.,  2.],
...      [ 2.,  0.,  0.],
...      [ 0.,  1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm='l2')
>>> X_normalized
array([[ 0.40..., -0.40...,  0.81...],
       [ 1.  ...,  0.  ...,  0.  ...],
       [ 0.  ...,  0.70..., -0.70...]])

3.归一化:

>>> X_train = np.array([[ 1., -1.,  2.],
...                     [ 2.,  0.,  0.],
...                     [ 0.,  1., -1.]])
...
>>> min_max_scaler = preprocessing.MinMaxScaler()
>>> X_train_minmax = min_max_scaler.fit_transform(X_train)
>>> X_train_minmax
array([[ 0.5       ,  0.        ,  1.        ],
       [ 1.        ,  0.5       ,  0.33333333],
       [ 0.        ,  1.        ,  0.        ]])

3.3.2 文本型特征提取

文本型数据提取特征相对数字型要复杂很多,本质上是做单词切分,不同的单词当作一个新的特征,以hash结构为例:

>>> measurements = [
...     {'city': 'Dubai', 'temperature': 33.},
...     {'city': 'London', 'temperature': 12.},
...     {'city': 'San Fransisco', 'temperature': 18.},
... ]

键值city具有多个取值,“Dubai”、“London”和“San Fransisco”,直接把每个取值作为新的特征即可。键值temperature是数值型,可以直接作为特征使用。

>>> from sklearn.feature_extraction import DictVectorizer
>>> vec = DictVectorizer()
>>> vec.fit_transform(measurements).toarray()
array([[  1.,   0.,   0.,  33.],
       [  0.,   1.,   0.,  12.],
       [  0.,   0.,   1.,  18.]])
>>> vec.get_feature_names()
['city=Dubai', 'city=London', 'city=San Fransisco', 'temperature']

文本特征提取有两个非常重要的模型。
词集模型:单词构成的集合,集合中每个元素都只有一个,即词集中的每个单词都只有一个。
词袋模型:如果一个单词在文档中出现不止一次,并统计其出现的次数(频数)。
两者本质上的区别,词袋是在词集的基础上增加了频率的维度:词集只关注有和没有,词袋还要关注有几个。
假设我们要对一篇文章进行特征化,最常见的方式就是词袋。
导入相关的函数库:

>>> from sklearn.feature_extraction.text import CountVectorizer

实例化分词对象:

>>> vectorizer = CountVectorizer(min_df=1)
>>> vectorizer                     
CountVectorizer(analyzer=...'word', binary=False, decode_error=...'strict',
    dtype=<... 'numpy.int64'>, encoding=...'utf-8', input=...'content',
    lowercase=True, max_df=1.0, max_features=None, min_df=1,
    ngram_range=(1, 1), preprocessor=None, stop_words=None,
    strip_accents=None, token_pattern=...'(?u)\\b\\w\\w+\\b',
    tokenizer=None, vocabulary=None)

将文本进行词袋处理:

>>> corpus = [
...     'This is the first document.',
...     'This is the second second document.',
...     'And the third one.',
...     'Is this the first document?',
... ]
>>> X = vectorizer.fit_transform(corpus)
>>> X                              
<4x9 sparse matrix of type '<... 'numpy.int64'>'
    with 19 stored elements in Compressed Sparse ... format>
获取对应的特征名称:
>>> vectorizer.get_feature_names() == (
...     ['and', 'document', 'first', 'is', 'one',
...      'second', 'the', 'third', 'this'])
True

获取词袋数据,至此我们已经完成了词袋化。但是对于程序中的其他文本,如何使用现有的词袋的特征进行向量化呢?

>>> X.toarray()
array([[0, 1, 1, 1, 0, 0, 1, 0, 1],
       [0, 1, 0, 1, 0, 2, 1, 0, 1],
       [1, 0, 0, 0, 1, 0, 1, 1, 0],
       [0, 1, 1, 1, 0, 0, 1, 0, 1]]...)

我们定义词袋的特征空间叫做词汇表vocabulary:

vocabulary=vectorizer.vocabulary_

针对其他文本进行词袋处理时,可以直接使用现有的词汇表:

>>> new_vectorizer = CountVectorizer(min_df=1, vocabulary=vocabulary)

TensorFlow中有类似实现:

from sklearn.feature_extraction.text import CountVectorizer
MAX_DOCUMENT_LENGTH = 100
vocab_processor = 
learn.preprocessing.VocabularyProcessor(MAX_DOCUMENT_LENGTH)
x_train = np.array(list(vocab_processor.fit_transform(x_train)))
x_test = np.array(list(vocab_processor.transform(x_test)))

3.3.3 数据读取

平时处理数据时,CSV是最常见的格式,文件的每行记录一个向量,其中最后一列为标记。TensorFlow提供了非常便捷的方式从CSV文件中读取数据集。
加载对应的函数库:

    import tensorflow as tf
import numpy as np

从CSV文件中读取数据:

    training_set = tf.contrib.learn.datasets.base.load_csv_with_header(
    filename=" iris_training.csv",
    target_dtype=np.int,
    features_dtype=np.float32)
feature_columns = [tf.contrib.layers.real_valued_column("", dimension=4)]

其中各个参数定义为:
filename,文件名;
target_dtype,标记数据类型;
features_dtype,特征数据类型。
访问数据集合的特征以及标记的方式为:

x=training_set.data
y=training_set.target
相关文章
|
22天前
|
前端开发
【前端web入门第四天】02 CSS三大特性+背景图
本文详细介绍了CSS的三大特性:继承性、层叠性和优先级,并深入讲解了背景图的相关属性,包括背景属性、背景图的平铺方式、位置设定、缩放、固定以及复合属性。其中,继承性指子元素自动继承父元素的文字控制属性;层叠性指相同属性后定义覆盖前定义,不同属性可叠加;优先级涉及选择器权重,包括行内样式、ID选择器等。背景图部分则通过具体示例展示了如何设置背景图像的位置、大小及固定方式等。
239 91
|
22天前
|
前端开发
【前端web入门第四天】01 复合选择器与伪类选择器
本文档详细介绍了CSS中的复合选择器与伪类选择器。复合选择器包括后代选择器、子代选择器、并集选择器和交集选择器,能够更精确地定位和样式化元素。后代选择器用于选中某元素的所有后代,子代选择器仅选中直接子元素。并集选择器可为多个标签设置相同样式,而交集选择器则选中同时满足多个条件的元素。此外,还介绍了伪类选择器,如鼠标悬停效果和超链接的不同状态。
50 32
【前端web入门第四天】01 复合选择器与伪类选择器
|
7天前
|
前端开发 开发者 Python
从零到一:Python Web框架中的模板引擎入门与进阶
在Web开发的广阔世界里,模板引擎是连接后端逻辑与前端展示的重要桥梁。对于Python Web开发者而言,掌握模板引擎的使用是从零到一构建动态网站或应用不可或缺的一步。本文将带你从基础入门到进阶应用,深入了解Python Web框架中的模板引擎。
14 3
|
10天前
|
SQL 安全 数据库
惊!Python Web安全黑洞大曝光:SQL注入、XSS、CSRF,你中招了吗?
在数字化时代,Web应用的安全性至关重要。许多Python开发者在追求功能时,常忽视SQL注入、XSS和CSRF等安全威胁。本文将深入剖析这些风险并提供最佳实践:使用参数化查询预防SQL注入;通过HTML转义阻止XSS攻击;在表单中加入CSRF令牌增强安全性。遵循这些方法,可有效提升Web应用的安全防护水平,保护用户数据与隐私。安全需持续关注与改进,每个细节都至关重要。
40 5
|
9天前
|
JSON 安全 JavaScript
Web安全-JQuery框架XSS漏洞浅析
Web安全-JQuery框架XSS漏洞浅析
38 2
|
12天前
|
SQL 安全 数据库
深度揭秘:Python Web安全攻防战,SQL注入、XSS、CSRF一网打尽!
在Web开发领域,Python虽强大灵活,却也面临着SQL注入、XSS与CSRF等安全威胁。本文将剖析这些常见攻击手段,并提供示例代码,展示如何利用参数化查询、HTML转义及CSRF令牌等技术构建坚固防线,确保Python Web应用的安全性。安全之路永无止境,唯有不断改进方能应对挑战。
39 5
|
11天前
|
SQL 安全 数据安全/隐私保护
Python Web安全大挑战:面对SQL注入、XSS、CSRF,你准备好了吗?
在构建Python Web应用时,安全性至关重要。本文通过三个真实案例,探讨了如何防范SQL注入、XSS和CSRF攻击。首先,通过参数化查询替代字符串拼接,防止SQL注入;其次,利用HTML转义机制,避免XSS攻击;最后,采用CSRF令牌验证,保护用户免受CSRF攻击。这些策略能显著增强应用的安全性,帮助开发者应对复杂的网络威胁。安全是一个持续的过程,需不断学习新知识以抵御不断变化的威胁。
57 1
|
13天前
|
SQL 安全 数据库
深度揭秘:Python Web安全攻防战,SQL注入、XSS、CSRF一网打尽!
在Web开发领域,Python虽强大灵活,但安全挑战不容小觑。本文剖析Python Web应用中的三大安全威胁:SQL注入、XSS及CSRF,并提供防御策略。通过示例代码展示如何利用参数化查询、HTML转义与CSRF令牌构建安全防线,助您打造更安全的应用。安全是一场持久战,需不断改进优化。
27 3
|
21天前
|
前端开发
【前端web入门第五天】03 清除默认样式与外边距问题【附综合案例产品卡片与新闻列表】
本文档详细介绍了CSS中清除默认样式的方法,包括清除内外边距、列表项目符号等;探讨了外边距的合并与塌陷问题及其解决策略;讲解了行内元素垂直边距的处理技巧;并介绍了圆角与盒子阴影效果的实现方法。最后通过产品卡片和新闻列表两个综合案例,展示了所学知识的实际应用。
29 11
|
21天前
|
前端开发
下一篇
无影云桌面