《Web安全之机器学习入门》一 3.3 特征提取

简介: 本节书摘来自华章出版社《Web安全之机器学习入门》一 书中的第3章,第3.3节,作者:刘焱,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

3.3 特征提取

机器学习中,特征提取被认为是个体力活,有人形象地称为“特征工程”,可见其工作量之大。特征提取中数字型和文本型特征的提取最为常见。

3.3.1 数字型特征提取

数字型特征可以直接作为特征,但是对于一个多维的特征,某一个特征的取值范围特别大,很可能导致其他特征对结果的影响被忽略,这时候我们需要对数字型特征进行预处理,常见的预处理方式有以下几种。
1.标准化:

>>> from sklearn import preprocessing
>>> import numpy as np
>>> X = np.array([[ 1., -1.,  2.],
...               [ 2.,  0.,  0.],
...               [ 0.,  1., -1.]])
>>> X_scaled = preprocessing.scale(X)
>>> X_scaled
array([[ 0.  ..., -1.22...,  1.33...],
       [ 1.22...,  0.  ..., -0.26...],
       [-1.22...,  1.22..., -1.06...]])

2.正则化:

>>> X = [[ 1., -1.,  2.],
...      [ 2.,  0.,  0.],
...      [ 0.,  1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm='l2')
>>> X_normalized
array([[ 0.40..., -0.40...,  0.81...],
       [ 1.  ...,  0.  ...,  0.  ...],
       [ 0.  ...,  0.70..., -0.70...]])

3.归一化:

>>> X_train = np.array([[ 1., -1.,  2.],
...                     [ 2.,  0.,  0.],
...                     [ 0.,  1., -1.]])
...
>>> min_max_scaler = preprocessing.MinMaxScaler()
>>> X_train_minmax = min_max_scaler.fit_transform(X_train)
>>> X_train_minmax
array([[ 0.5       ,  0.        ,  1.        ],
       [ 1.        ,  0.5       ,  0.33333333],
       [ 0.        ,  1.        ,  0.        ]])

3.3.2 文本型特征提取

文本型数据提取特征相对数字型要复杂很多,本质上是做单词切分,不同的单词当作一个新的特征,以hash结构为例:

>>> measurements = [
...     {'city': 'Dubai', 'temperature': 33.},
...     {'city': 'London', 'temperature': 12.},
...     {'city': 'San Fransisco', 'temperature': 18.},
... ]

键值city具有多个取值,“Dubai”、“London”和“San Fransisco”,直接把每个取值作为新的特征即可。键值temperature是数值型,可以直接作为特征使用。

>>> from sklearn.feature_extraction import DictVectorizer
>>> vec = DictVectorizer()
>>> vec.fit_transform(measurements).toarray()
array([[  1.,   0.,   0.,  33.],
       [  0.,   1.,   0.,  12.],
       [  0.,   0.,   1.,  18.]])
>>> vec.get_feature_names()
['city=Dubai', 'city=London', 'city=San Fransisco', 'temperature']

文本特征提取有两个非常重要的模型。
词集模型:单词构成的集合,集合中每个元素都只有一个,即词集中的每个单词都只有一个。
词袋模型:如果一个单词在文档中出现不止一次,并统计其出现的次数(频数)。
两者本质上的区别,词袋是在词集的基础上增加了频率的维度:词集只关注有和没有,词袋还要关注有几个。
假设我们要对一篇文章进行特征化,最常见的方式就是词袋。
导入相关的函数库:

>>> from sklearn.feature_extraction.text import CountVectorizer

实例化分词对象:

>>> vectorizer = CountVectorizer(min_df=1)
>>> vectorizer                     
CountVectorizer(analyzer=...'word', binary=False, decode_error=...'strict',
    dtype=<... 'numpy.int64'>, encoding=...'utf-8', input=...'content',
    lowercase=True, max_df=1.0, max_features=None, min_df=1,
    ngram_range=(1, 1), preprocessor=None, stop_words=None,
    strip_accents=None, token_pattern=...'(?u)\\b\\w\\w+\\b',
    tokenizer=None, vocabulary=None)

将文本进行词袋处理:

>>> corpus = [
...     'This is the first document.',
...     'This is the second second document.',
...     'And the third one.',
...     'Is this the first document?',
... ]
>>> X = vectorizer.fit_transform(corpus)
>>> X                              
<4x9 sparse matrix of type '<... 'numpy.int64'>'
    with 19 stored elements in Compressed Sparse ... format>
获取对应的特征名称:
>>> vectorizer.get_feature_names() == (
...     ['and', 'document', 'first', 'is', 'one',
...      'second', 'the', 'third', 'this'])
True

获取词袋数据,至此我们已经完成了词袋化。但是对于程序中的其他文本,如何使用现有的词袋的特征进行向量化呢?

>>> X.toarray()
array([[0, 1, 1, 1, 0, 0, 1, 0, 1],
       [0, 1, 0, 1, 0, 2, 1, 0, 1],
       [1, 0, 0, 0, 1, 0, 1, 1, 0],
       [0, 1, 1, 1, 0, 0, 1, 0, 1]]...)

我们定义词袋的特征空间叫做词汇表vocabulary:

vocabulary=vectorizer.vocabulary_

针对其他文本进行词袋处理时,可以直接使用现有的词汇表:

>>> new_vectorizer = CountVectorizer(min_df=1, vocabulary=vocabulary)

TensorFlow中有类似实现:

from sklearn.feature_extraction.text import CountVectorizer
MAX_DOCUMENT_LENGTH = 100
vocab_processor = 
learn.preprocessing.VocabularyProcessor(MAX_DOCUMENT_LENGTH)
x_train = np.array(list(vocab_processor.fit_transform(x_train)))
x_test = np.array(list(vocab_processor.transform(x_test)))

3.3.3 数据读取

平时处理数据时,CSV是最常见的格式,文件的每行记录一个向量,其中最后一列为标记。TensorFlow提供了非常便捷的方式从CSV文件中读取数据集。
加载对应的函数库:

    import tensorflow as tf
import numpy as np

从CSV文件中读取数据:

    training_set = tf.contrib.learn.datasets.base.load_csv_with_header(
    filename=" iris_training.csv",
    target_dtype=np.int,
    features_dtype=np.float32)
feature_columns = [tf.contrib.layers.real_valued_column("", dimension=4)]

其中各个参数定义为:
filename,文件名;
target_dtype,标记数据类型;
features_dtype,特征数据类型。
访问数据集合的特征以及标记的方式为:

x=training_set.data
y=training_set.target
相关文章
|
3月前
|
机器学习/深度学习 数据采集 算法
深入了解机器学习:从入门到应用
【10月更文挑战第6天】深入了解机器学习:从入门到应用
|
24天前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
61 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
2月前
|
机器学习/深度学习 数据采集
机器学习入门——使用Scikit-Learn构建分类器
机器学习入门——使用Scikit-Learn构建分类器
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
46 2
|
2月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
38 1
|
2月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
72 0
|
3月前
|
机器学习/深度学习 缓存 监控
利用机器学习优化Web性能和用户体验
【10月更文挑战第16天】本文探讨了如何利用机器学习技术优化Web性能和用户体验。通过分析用户行为和性能数据,机器学习可以实现动态资源优化、预测性缓存、性能瓶颈检测和自适应用户体验。文章还介绍了实施步骤和实战技巧,帮助开发者更有效地提升Web应用的速度和用户满意度。
|
2月前
|
机器学习/深度学习 算法 Python
机器学习入门:理解并实现K-近邻算法
机器学习入门:理解并实现K-近邻算法
41 0
|
3月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第12天】本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和入门实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型训练和评估等步骤,并提供了代码示例。通过本文,读者可以掌握机器学习的基本流程,并为深入学习打下坚实基础。
30 1
|
3月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型选择与训练、模型评估及交叉验证等关键步骤。通过本文,初学者可以快速上手并掌握机器学习的基本技能。
74 2