《Spark与Hadoop大数据分析》——1.3 工具和技术

简介: 本节书摘来自华章计算机《Spark与Hadoop大数据分析》一书中的第1章,第1.3节,作者 [美]文卡特·安卡姆(Venkat Ankam),译 吴今朝,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

1.3 工具和技术

让我们来看看在 Hadoop 和 Spark 中用于大数据分析的不同工具和技术。

虽然 Hadoop 平台可以用于存储和处理数据,但 Spark 只能通过将数据读入内存来进行处理。

下表展示了典型大数据分析项目中所使用的工具和技术。

image
image
image

相关文章
|
2月前
|
数据采集 传感器 人工智能
大数据关键技术之电商API接口接入数据采集发展趋势
本文从数据采集场景、数据采集系统、数据采集技术方面阐述数据采集的发展趋势。 01 数据采集场景的发展趋势 作为大数据和人工智能工程的源头,数据采集的场景伴随着应用场景的发展而变化,以下是数据采集场景的发展趋势。
|
2月前
|
数据采集 搜索推荐 大数据
大数据技术在电商平台中的应用
电商平台是当今社会最为普及的购物方式之一,而大数据技术则成为了众多企业的强有力竞争力。本文将介绍大数据技术在电商平台中的应用,包括数据采集、预测分析、用户画像等方面,并探讨其对电商平台的价值和意义。
|
2月前
|
机器学习/深度学习 数据采集 算法
大数据分析技术与方法探究
在当今信息化时代,数据量的增长速度远快于人类的处理能力。因此,如何高效地利用大数据,成为了企业和机构关注的焦点。本文将从大数据分析的技术和方法两个方面进行探究,为各行业提供更好的数据应用方向。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
大数据分析的技术和方法:从深度学习到机器学习
大数据时代的到来,让数据分析成为了企业和组织中不可或缺的一环。如何高效地处理庞大的数据集并且从中发现潜在的价值是每个数据分析师都需要掌握的技能。本文将介绍大数据分析的技术和方法,包括深度学习、机器学习、数据挖掘等方面的应用,以及如何通过这些技术和方法来解决实际问题。
23 2
|
2月前
|
存储 数据采集 大数据
大数据处理与分析技术:驱动智能决策的引擎
本文介绍了大数据处理与分析技术在现代社会中的重要性和应用。从数据采集、存储、处理到分析决策,大数据技术为我们提供了深入洞察和智能决策的能力,推动着各行各业的创新和发展。
23 0
|
3天前
|
机器学习/深度学习 数据可视化 数据挖掘
Python技术应用:数据分析与可视化的利器
【2月更文挑战第7天】在当今信息爆炸的时代,数据分析和可视化已经成为各行业的核心竞争力。Python作为一种简洁、高效的编程语言,为数据分析带来了全新的可能性。本文将介绍Python在数据分析和可视化领域的应用,探讨其在实际工作中的重要性和价值。
13 2
|
2月前
|
机器学习/深度学习 存储 人工智能
大数据处理与分析技术:未来的基石
在信息化时代,数据已成为企业发展和决策的基础。而随着数据量的不断增长,传统的数据处理方法已经无法满足现代企业的需求。因此,大数据处理与分析技术的出现成为了新时代的必需品。本文将介绍大数据处理与分析技术的概念,意义、应用场景以及未来发展趋势。
29 3
|
4天前
|
数据可视化 数据挖掘 大数据
Python数据分析中的数据可视化技术应用
数据可视化是数据分析中至关重要的一环,能够帮助分析师和决策者更直观地理解数据。本文将介绍Python数据分析中常用的数据可视化技术,包括Matplotlib、Seaborn和Plotly,并结合实际案例演示它们在数据分析中的应用。
|
5天前
|
SQL 分布式计算 数据库
离线数仓--大数据技术之DolphinScheduler
离线数仓--大数据技术之DolphinScheduler
62 2
|
8天前
|
存储 NoSQL 大数据
新型数据库技术在大数据处理中的应用探讨
【2月更文挑战第2天】随着信息时代的到来,大数据处理成为了各行业发展的关键。本文将探讨新型数据库技术在大数据处理中的应用,分析其优势和挑战,为读者提供深入了解和思考。
19 5