《构建实时机器学习系统》一1.5 实时机器学习的分类

简介: 本节书摘来自华章出版社《构建实时机器学习系统》一 书中的第1章,第1.5节,作者:彭河森 汪涵,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

1.5 实时机器学习的分类

按照实际应用中采用的方式不同,实时机器学习可以分为硬实时、软实时和批实时三种模式,下面将分别进行介绍。

1.5.1 硬实时机器学习

硬实时的定义是:响应系统在接收到请求之后,能够马上对请求进行响应反馈,做出处理。硬实时机器学习的主要应用场景是网页浏览、在线游戏、高频交易等对时效性要求非常高的领域。在这些领域中,我们往往需要将相应延迟控制在若干毫秒以下。对于高频交易等场景,更是有不少计算机软件、硬件专家,开发出了各种专有模块以在更短的时间内完成交易,获得超额利润。
在本书写作之时,计算机网络的传输速度仍然是响应延迟的一大主要因素。硬实时机器学习的响应架构往往会试图尽量减少请求处理过程中的网络传输步骤。与此同时,为了达到硬实时的要求,在请求突然增加的时候,往往会采取负载均衡的方法,靠增加服务器的数量来减少响应延迟。

1.5.2 软实时机器学习

软实时的定义是:响应系统在接收到请求的时候,立即开始对响应进行处理,并且在较短时间内进行反馈。软实时机器学习只要求系统立即对请求开始进行处理,最后处理完成所消耗的时间比较少,但是要求不如硬实时严格。软实时机器学习的主要应用场景是物流运输、较为频繁的数量金融交易等领域。例如某物流企业在接到订单之后需要对运输时间、物品风险进行预估,其中需要和多个系统服务进行交互读取,这个时候我们需要系统能够实时地做出处理,但是处理结果可能需要经过数秒才能得到。
由于软实时机器学习对响应延迟的要求有所放松,因此往往会在处理架构中加入分布式队列这一组成部件。处理的任务会被实时地传输到分布式队列中,而后端的处理程序能响应式地对任务进行处理。与此同时,在请求增加的时候,可以通过分布式队列缓冲到达的任务,也可以通过负载均衡的方法增加处理单元,以保证低延迟。

1.5.3 批实时机器学习

硬实时机器学习和软实时机器学习都是针对具体的单个事件进行处理。与此相对应的,批实时机器学习是指对成批到达的数据进行实时的处理。批实时机器学习的应用场景往往处于后端机器学习模型的训练和数据处理加工上。通过实时训练的模型将会被部署到硬、软实时机器学习架构中,对数据进行处理。
由于批实时机器学习需要对一定时间窗口内的所有数据进行处理,因此批实时机器学习架构中往往也会有一个分布式队列,对时间窗口内的数据进行缓冲和加工。在数据流向增加的时候,可以通过加大分布式队列的容量,提高分布式队列的处理能力;也可以通过增加处理单元的方法来提高处理能力,以保证低延迟。

相关文章
|
2月前
|
机器学习/深度学习 数据采集 数据处理
Scikit-learn Pipeline完全指南:高效构建机器学习工作流
Scikit-learn管道是构建高效、鲁棒、可复用的机器学习工作流程的利器。通过掌握管道的使用,我们可以轻松地完成从数据预处理到模型训练、评估和部署的全流程,极大地提高工作效率。
42 2
Scikit-learn Pipeline完全指南:高效构建机器学习工作流
|
1月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
50 12
|
2天前
|
人工智能 运维 API
PAI企业级能力升级:应用系统构建、高效资源管理、AI治理
PAI平台针对企业用户在AI应用中的复杂需求,提供了全面的企业级能力。涵盖权限管理、资源分配、任务调度与资产管理等模块,确保高效利用AI资源。通过API和SDK支持定制化开发,满足不同企业的特殊需求。典型案例中,某顶尖高校基于PAI构建了融合AI与HPC的科研计算平台,实现了作业、运营及运维三大中心的高效管理,成功服务于校内外多个场景。
|
1月前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
70 4
|
2月前
|
机器学习/深度学习 数据采集
机器学习入门——使用Scikit-Learn构建分类器
机器学习入门——使用Scikit-Learn构建分类器
|
2月前
|
机器学习/深度学习 数据采集 算法
从零到一:构建高效机器学习模型的旅程####
在探索技术深度与广度的征途中,我深刻体会到技术创新既在于理论的飞跃,更在于实践的积累。本文将通过一个具体案例,分享我在构建高效机器学习模型过程中的实战经验,包括数据预处理、特征工程、模型选择与优化等关键环节,旨在为读者提供一个从零开始构建并优化机器学习模型的实用指南。 ####
|
2月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
52 1
|
2月前
|
机器学习/深度学习 自然语言处理 Linux
Linux 中的机器学习:Whisper——自动语音识别系统
本文介绍了先进的自动语音识别系统 Whisper 在 Linux 环境中的应用。Whisper 基于深度学习和神经网络技术,支持多语言识别,具有高准确性和实时处理能力。文章详细讲解了在 Linux 中安装、配置和使用 Whisper 的步骤,以及其在语音助手、语音识别软件等领域的应用场景。
68 5
|
2月前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
123 1
|
3月前
|
机器学习/深度学习 API 计算机视觉
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
48 2