《构建实时机器学习系统》一1.5 实时机器学习的分类

简介: 本节书摘来自华章出版社《构建实时机器学习系统》一 书中的第1章,第1.5节,作者:彭河森 汪涵,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

1.5 实时机器学习的分类

按照实际应用中采用的方式不同,实时机器学习可以分为硬实时、软实时和批实时三种模式,下面将分别进行介绍。

1.5.1 硬实时机器学习

硬实时的定义是:响应系统在接收到请求之后,能够马上对请求进行响应反馈,做出处理。硬实时机器学习的主要应用场景是网页浏览、在线游戏、高频交易等对时效性要求非常高的领域。在这些领域中,我们往往需要将相应延迟控制在若干毫秒以下。对于高频交易等场景,更是有不少计算机软件、硬件专家,开发出了各种专有模块以在更短的时间内完成交易,获得超额利润。
在本书写作之时,计算机网络的传输速度仍然是响应延迟的一大主要因素。硬实时机器学习的响应架构往往会试图尽量减少请求处理过程中的网络传输步骤。与此同时,为了达到硬实时的要求,在请求突然增加的时候,往往会采取负载均衡的方法,靠增加服务器的数量来减少响应延迟。

1.5.2 软实时机器学习

软实时的定义是:响应系统在接收到请求的时候,立即开始对响应进行处理,并且在较短时间内进行反馈。软实时机器学习只要求系统立即对请求开始进行处理,最后处理完成所消耗的时间比较少,但是要求不如硬实时严格。软实时机器学习的主要应用场景是物流运输、较为频繁的数量金融交易等领域。例如某物流企业在接到订单之后需要对运输时间、物品风险进行预估,其中需要和多个系统服务进行交互读取,这个时候我们需要系统能够实时地做出处理,但是处理结果可能需要经过数秒才能得到。
由于软实时机器学习对响应延迟的要求有所放松,因此往往会在处理架构中加入分布式队列这一组成部件。处理的任务会被实时地传输到分布式队列中,而后端的处理程序能响应式地对任务进行处理。与此同时,在请求增加的时候,可以通过分布式队列缓冲到达的任务,也可以通过负载均衡的方法增加处理单元,以保证低延迟。

1.5.3 批实时机器学习

硬实时机器学习和软实时机器学习都是针对具体的单个事件进行处理。与此相对应的,批实时机器学习是指对成批到达的数据进行实时的处理。批实时机器学习的应用场景往往处于后端机器学习模型的训练和数据处理加工上。通过实时训练的模型将会被部署到硬、软实时机器学习架构中,对数据进行处理。
由于批实时机器学习需要对一定时间窗口内的所有数据进行处理,因此批实时机器学习架构中往往也会有一个分布式队列,对时间窗口内的数据进行缓冲和加工。在数据流向增加的时候,可以通过加大分布式队列的容量,提高分布式队列的处理能力;也可以通过增加处理单元的方法来提高处理能力,以保证低延迟。

相关文章
|
2月前
|
人工智能 自然语言处理 安全
通过阿里云Milvus与PAI搭建高效的检索增强对话系统
阿里云向量检索Milvus版是一款全托管的云服务,兼容开源Milvus并支持无缝迁移。它提供大规模AI向量数据的相似性检索服务,具备易用性、可用性、安全性和低成本等优势,适用于多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等场景。用户可通过PAI平台部署RAG系统,创建和配置Milvus实例,并利用Attu工具进行可视化操作,快速开发和部署应用。使用前需确保Milvus实例和PAI在相同地域,并完成相关配置与开通服务。
|
1天前
|
人工智能 自然语言处理 API
Hologres × PAI × DeepSeek 搭建 RAG 检索增强对话系统
本文介绍如何使用PAI-EAS部署基于DeepSeek大模型的RAG(检索增强生成)服务,并关联Hologres引擎实例。Hologres与阿里云自研高性能向量计算软件库Proxima深度整合,支持高性能、低延时的向量计算能力。通过PAI-EAS,用户可以一键部署集成了大语言模型和RAG技术的对话系统服务,显著缩短部署时间,并提高问答质量。部署步骤包括准备Hologres向量检索库、部署基于DeepSeek的RAG服务、通过WebUI进行模型推理验证,以及通过API调用进行模型推理验证。Hologres还提供了特色功能支持,如高性能向量计算等。
|
8天前
|
机器学习/深度学习 数据采集 人工智能
容器化机器学习流水线:构建可复用的AI工作流
本文介绍了如何构建容器化的机器学习流水线,以提高AI模型开发和部署的效率与可重复性。首先,我们探讨了机器学习流水线的概念及其优势,包括自动化任务、确保一致性、简化协作和实现CI/CD。接着,详细说明了使用Kubeflow Pipelines在Kubernetes上构建流水线的步骤,涵盖安装、定义流水线、构建组件镜像及上传运行。容器化流水线不仅提升了环境一致性和可移植性,还通过资源隔离和扩展性支持更大规模的数据处理。
|
15天前
|
人工智能 自然语言处理 搜索推荐
云上玩转DeepSeek系列之三:PAI-RAG集成联网搜索,构建企业级智能助手
本文将为您带来“基于 PAI-RAG 构建 DeepSeek 联网搜索+企业级知识库助手服务”解决方案,PAI-RAG 提供全面的生态能力,支持一键部署至企业微信、微信公众号、钉钉群聊机器人等,助力打造多场景的AI助理,全面提升业务效率与用户体验。
|
2月前
|
SQL 存储 人工智能
DMS+X构建Gen-AI时代的一站式Data+AI平台
本文整理自阿里云数据库团队Analytic DB、PostgreSQL产品及生态工具负责人周文超和龙城的分享,主要介绍Gen-AI时代的一站式Data+AI平台DMS+X。 本次分享的内容主要分为以下几个部分: 1.发布背景介绍 2.DMS重磅发布:OneMeta 3.DMS重磅发布:OneOps 4.DMS+X最佳实践,助力企业客户实现产业智能化升级
114 3
DMS+X构建Gen-AI时代的一站式Data+AI平台
|
6天前
|
人工智能 自然语言处理 安全
基于阿里云向量检索 Milvus 版与 PAI 搭建高效的检索增强生成(RAG)系统
基于阿里云向量检索 Milvus 版与 PAI 搭建高效的检索增强生成(RAG)系统
|
4月前
|
机器学习/深度学习 数据采集 数据处理
Scikit-learn Pipeline完全指南:高效构建机器学习工作流
Scikit-learn管道是构建高效、鲁棒、可复用的机器学习工作流程的利器。通过掌握管道的使用,我们可以轻松地完成从数据预处理到模型训练、评估和部署的全流程,极大地提高工作效率。
68 2
Scikit-learn Pipeline完全指南:高效构建机器学习工作流
|
3月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
85 12
|
2月前
|
人工智能 运维 API
PAI企业级能力升级:应用系统构建、高效资源管理、AI治理
PAI平台针对企业用户在AI应用中的复杂需求,提供了全面的企业级能力。涵盖权限管理、资源分配、任务调度与资产管理等模块,确保高效利用AI资源。通过API和SDK支持定制化开发,满足不同企业的特殊需求。典型案例中,某顶尖高校基于PAI构建了融合AI与HPC的科研计算平台,实现了作业、运营及运维三大中心的高效管理,成功服务于校内外多个场景。
|
3月前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
157 4

热门文章

最新文章