大数据是善政之技

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

沈阳,清华大学新闻与传播学院教授

大数据火遍朝野,虽有部分人士属于跟风尾随,但大数据本身表现出的巨大潜力,却切切实实影响着社会各领域的未来视角。

如果我们能够通过可穿戴设备随时收集自身的各类体征数据,那么我们自然可以预测出我们将要发生什么病症,这对于人的生活健康质量将有革命性意义。

如果我们还能够将这些数据发送至医院,则预防或者在病症早期及时介入治疗也不是一句空话。

如果我们还能够在保护隐私的前提下将这些数据向各行各业开放,那么医药行业的药品研制周期将大幅度缩短,食品行业的安全监测也将实时更新,甚至于天气、环境的状况监测也有了“人的反应”的一面。

想象一下未来的天气和社会环境播报,可能会告诉你,昨天天气突降5度,整个城市有2151个人感冒。到了情人节,甚至能够告诉你,昨天有1113个人出现了恋爱的生物指数变动。

大数据毫无疑问是一场整合工业、农业、社会的信息革命,是对PC和移动时代的微创新积累之后的颠覆性革命。

前景如此广阔,中国也在行动。

上海卫生信息化数据平台正在做的尝试是:打破医院信息藩篱,当患者看病时,任意一家公立医院都能立即给出患者的就医病史、检查化验报告、近期用药并智能提示患者特质及简单预测等等。

北京市卫计委通过与百度进行大数据合作,将在公共突发事件、流行病爆发、健康服务业发展、人口流动等领域提供分析和预警。

6月12日政协双周协商座谈会上,俞正声和各界委员们共商大数据前景,探讨了大数据技术对于提高政府科学决策、监管市场、公共服务、社会管理和生态文明的重要性。

大数据首先是大,其数据体量巨大,例如国内最大的数据存量,百度的数据体量达到EB级别,而人类目前存储数据总量约为数百EB。其次是杂,多态、多模、多领域、多结构化的数据到处都是,要利用好大数据,需要很强的数据整合和清洗能力,在这方面搜索引擎具有很好的前期技术积累。再次是准,大数据的分析过程是逐层抽象、降维、概括和解读的过程。需要有很好的人文背景及统计思维。最后大数据的处理分析还是很难的。需要从简单的相关性分析向不相关性分析转变,需要从直接统计迈向高度概括,需要从窄域分析迈向跨域整合。

从政府提升现代治理和服务能力的角度看,大数据平台能够广泛应用于公共服务、廉政监督、行政优化、政府决策和金融监管等各领域。

1、在金融行业监管和服务上,构建金融风险控制大数据分析体系,能够及时发现税务和金融领域的漏洞,提高行政效率。当数据整合到一定程度时,能够实时分析国内小微企业的生存状况,可以给精准经济调控提供有力数据支持。

2、在廉政监督方面,可以构建全国官员的网络形象分析平台,对于官员网络口碑和网络举报进行实时收集,从而形成廉政勤政的强大威慑力。

3、在公共突发事件中,构建全网舆情监测平台,有助于建立公共突发事件决策和预测模型,及时处置事件,提供舆论景气指数,从而能够更快对民众意见,民心回暖、公众态度做出判断,有利于调整行政节奏和弥补失误。对于政府决策和政策实施,可以考虑进行政策实施推演,进一步优化政策的合理性。

4、在公共服务上,通过数据共享,实现精准的电子政务公共服务体系,传统官网移动化,民生服务个性化。结合社交化和本地化趋势,能够实施“指尖上的公众服务”。

5、在城市和社区管理上,建设大数据城市网格化管理协调平台。能够对各社区进行广泛的差异化分析,提供社区文化、社区安全、社区环境质量、社区居民心态、社区网络消费、社区物流配送等诸多方面的精准服务。

6、在环境监测上,基于大数据分析判别城市受污染的程度和特质,特别是对于区域污染的全局判断,对于污染源的定点清除等等具有突破价值。

大数据通过:信源整合化、数据规范化、分析相关化、研判跨域化、发布共享化,使得政府能够把握现实和洞察未来,从而提升决策的科学、高效和智能,也是建设透明、责任、现代政府的迫切需要。

当前,需要推动国家大数据分析的建设,建立跨越各部门、各领域、各界别的数据联通与开放标准体系,应尽快推进大数据整体实施方案的完善,保护个人隐私。可以从舆情、医疗、金融、食品安全、环境、城管、教育等诸多领域突破,取得实效,扩大影响。

推进大数据建设,需要充分发挥国内互联网公司的技术优势和本地特色,以百度为代表的互联网公司在大数据时代大有可为,从国家安全和数据优势的角度打破传统的政府部门垄断部分行政数据格局,更多地整合民间和官方的各自优势,实现跨越式发展,在分析体系、数据清洗、挖掘方法方面有所突破。

百度是国内首家管理EB级数据的互联网公司,在文本处理、数据清洗、异构规范、语义理解和深度学习上具有很强的技术优势。百度已正式开放了大数据引擎,将与社会各界开展搜索指数、舆情监测、趋势预测合作。阿里拥有海量交易数据、跨界数据和信用数据。腾讯则保有大量的社交网络、电子商务和O2O数据。新浪是国内最大的微博社交媒体平台。整合好这些民间数据是大数据快速推进的关键。

大数据是提升国家治理和服务能力的基础技术,需要创造性的运用互联网思维,推动中小型大数据公司的国内上市,加快各部门的信息公开,加强民间和官方的技术合作和交流,加大网民在数据运用和分析中的参与力度,加速对大数据技术的国家支持,加固大数据的隐私保护和立法规范,大数据才能走得更远。

原文发布时间为:2014-07-03
本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
1月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
4天前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
50 7
|
4天前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
15 2
|
17天前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
58 1
|
1月前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
49 3
|
11天前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
28 3
|
11天前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
41 2
|
14天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
47 2
|
16天前
|
数据采集 分布式计算 大数据
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第27天】在数字化时代,数据治理对于确保数据资产的保值增值至关重要。本文探讨了大数据平台的搭建和数据质量管理的重要性及实践方法。大数据平台应包括数据存储、处理、分析和展示等功能,常用工具如Hadoop、Apache Spark和Flink。数据质量管理则涉及数据的准确性、一致性和完整性,通过建立数据质量评估和监控体系,确保数据分析结果的可靠性。企业应设立数据治理委员会,投资相关工具和技术,提升数据治理的效率和效果。
49 2